Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16448
標題: 以毛細管電泳結合堆積線上濃縮方法分析γ-胺基丁酸及丙胺酸方法開發及其應用
On-line derivatization and stacking capillary electrophoretic analysis of γ-aminobutyric acid and alanine and its applications.
作者: 林雅品
Lin, Yar-Ping
關鍵字: Capillary electrophoresis;毛細管電泳;On-column derivatization;GABA;alanine;Stacking.;線上衍生化;胺基丁酸;丙胺酸
出版社: 化學系所
引用: 1.Rhodes, D.; Handa, S.; Bressan, R. A., Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiology 1986, 82, (4), 890-903. 2.Fougere, F.; Le Rudulier, D.; Streeter, J. G., Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa. Plant Physiology 1991, 96, (4), 1228-36. 3.Shelp, B. J.; Bown, A. W.; McLean, M. D., Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science 1999, 4, (11), 446-452. 4.Narayan, V. S.; Nair, P. M., Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 1990, 29, (2), 367-75. 5.Tsushida, T.; Murai, T., Conversion of glutamic acid to amino acid in tea leaves under anaerobic conditions. Agricultural and Biological Chemistry 1987, 51, (11), 2865-2871. 6.Vemulapalli, S.; Barletta, M., The role of the sympathetic nervous system in the cardiovascular effects of systemically administered gamma-aminobutyric acid. Archives internationales de pharmacodynamie et de therapie 1984, 267, (1), 46-58. 7.Zacharis, C. K.; Theodoridis, G. A.; Voulgaropoulos, A. N., On-line coupling of sequential injection with liquid chromatography for the automated derivatization and determination of [gamma]-aminobutyric acid in human biological fluids. Journal of Chromatography B 2004, 808, (2), 169-175. 8.Yang, C. S.; Tsai, P. J.; Chen, W. Y.; Tsai, W. J.; Kuo, J. S., On-line derivatization for continuous and automatic monitoring of brain extracellular glutamate levels in anesthetized rats: a microdialysis study. Journal of Chromatography, B: Biomedical Sciences and Applications 1999, 734, (1), 1-6. 9.Parrot, S.; Sauvinet, V.; Riban, V.; Depaulis, A.; Renaud, B.; Denoroy, L., High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. Journal of Neuroscience Methods 2004, 140, (1-2), 29-38. 10.O''Brien, K. B.; Esguerra, M.; Klug, C. T.; Miller, R. F.; Bowser, M. T., A high-throughput on-line microdialysis-capillary assay for D-serine. Electrophoresis 2003, 24, (7-8), 1227-1235. 11.Bowser, M. T.; Kennedy, R. T., In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis. Electrophoresis 2001, 22, (17), 3668-3676. 12.Nakagawa, M.; Yamada, Y.; Sawai, Y., Analysis of gama-aminobutyric acid in gabaron tea by ion chromatography. Nippon Shokuhin Kagaku Kogaku Kaishi 2002, 49, (3), 188-194. 13.Goto, T.; Horie, H.; Mukai, T., Analysis of major amino acids in green tea by high performance liquid chromatography coupled with OPA precolumn derivatization. Chagyo Kenkyu Hokoku 1993, 77, 29-33. 14.Zhang, L. Y.; Sun, M. X., Selective determination of [gamma]-aminobutyric acid, glutamate and alanine by mixed micellar electrokinetic chromatography and fluorescence detection. Journal of Chromatography A 2005, 1095, (1-2), 185-188. 15.Lin, Z.; Masashi, O., Study on functional mechanism of gabaron tea on hypertension. Chaye Kexue 2001, 21, (2), 153-156. 16.Lee, B. L.; Ong, C. N., Comparative analysis of tea catechins and theaflavins by high-performance liquid chromatography and capillary electrophoresis. Journal of Chromatography A 2000, 881, (1-2), 439-447. 17.Weber, P. L.; O''Shea, T. J.; Lunte, S. M., Separation and quantitation of the amino acid neurotransmitters in rat brain by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis 1994, 12, (3), 319-24. 18.Simo, C.; Rizzi, A.; Barbas, C.; Cifuentes, A., Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis 2005, 26, (7-8), 1432-1441. 19.Chang, P. L.; Chiu, T. C.; Chang, H. T., Stacking, derivatization, and separation by capillary electrophoresis of amino acids from cerebrospinal fluids. Electrophoresis 2006, 27, (10), 1922-1931. 20.O''Brien, K. B.; Esguerra, M.; Miller, R. F.; Bowser, M. T., Monitoring neurotransmitter release from isolated retinas using online microdialysis-capillary electrophoresis. Analytical Chemistry 2004, 76, (17), 5069-5074. 21.Chen, Z.; Wu, J.; Baker, G. B.; Parent, M.; Dovichi, N. J., Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. Journal of Chromatography A 2001, 914, (1-2), 293-298. 22.Bergquist, J.; Vona, M. J.; Stiller, C.-O.; O''Connor, W. T.; Falkenberg, T.; Ekman, R., Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter. Journal of Neuroscience Methods 1996, 65, (1), 33-42. 23.Tiselius, A., Study of the electrophoresis of proteins by the moving-boundary method. Nova Acta Regiae Societatis Scientiarum Upsaliensis 1930, 7, (No. 4), 107. 24.Neuhoff, V.; Schill, W. B.; Sternbach, H., Micro-analysis of pure deoxyribonucleic acid-dependent ribonucleic acid polymerase from Escherichia coli. Action of heparin and rifampicin on structure and function. Biochemical Journal 1970, 117, (3), 623-631. 25.Poehling, H. M.; Neuhoff, V., One- and two-dimensional electrophoresis in micro-slab gels. Electrophoresis 1980, 1, (2), 90-102. 26.Mikkers, F. E. P.; Everaerts, F. M.; Verheggen, T. P. E. M., High-performance zone electrophoresis. Journal of Chromatography 1979, 169, 11-20. 27.Jorgenson, J. W.; DeArman Lukacs, K., High-resolution separations based on electrophoresis and electroosmosis. Journal of Chromatography 1981, 218, 209-216. 28.Jorgenson, J. W.; DeArman Lukacs, K., Zone electrophoresis in open-tubular glass capillaries. Analytical Chemistry 1981, 53, (8), 1298-1302. 29.Jorgenson, J. W.; DeArman Lukacs, K., Capillary zone electrophoresis. Science 1983, 222, (4621), 266-272. 30.Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T., Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry 1984, 56, (1), 111-113. 31.Hjerten, S.; Zhu, M. D., Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. Journal of Chromatography 1985, 346, 265-270. 32.Cohen, A. S.; Karger, B. L., High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. Journal of Chromatography A 1987, 397, 409-417. 33.Tsuda, T., Electrochromatography using high applied voltage. Analytical Chemistry 1987, 59, (3), 521-523. 34.Yan, C.; Dadoo, R.; Zare, R. N.; Rakestraw, D. J.; Anex, D. S., Gradient elution in capillary electrochromatography. Analytical Chemistry 1996, 68, (17), 2726-2730. 35.Lurie, I. S.; Klein, R. F. X.; Dal Cason, T. A.; LeBelle, M. J.; Brenneisen, R.; Weinberger, R. E., Chiral resolution of cationic drugs of forensic interest by capillary electrophoresis with mixtures of neutral and anionic cyclodextrins. Analytical Chemistry 1994, 66, (22), 4019-4026. 36.Kuffner, C. A., Jr.; Marchi, E.; Morgado, J. M.; Rubio, C. R., Capillary electrophoresis and Daubert: time for admission. Analytical Chemistry 1996, 68, (7), 241A-246A. 37.Shihabi, Z. K., Capillary electrophoresis of double-stranded DNA in an untreated capillary. Journal of Chromatography A 1999, 853, (1-2), 349-354. 38.Bachmann, K.; Boden, J.; Haumann, I., Indirect fluorimetric detection of alkali and alkaline earth metal ions in capillary zone electrophoresis with cerium(III) as carrier electrolyte. Journal of Chromatography A 1992, 626, (2), 259-265. 39.Chao, Y. C.; Whang, C. W., Capillary zone electrophoresis of eleven priority phenols with indirect fluorescence detection. Journal of Chromatography A 1994, 663, (2), 229-237. 40.Swaile, D. F.; Sepaniak, M. E., Determination of metal ions by capillary zone electrophoresis with on-column chelation using 8-hydroxyquinoline-5-sulfonic acid. Analytical Chemistry 1991, 63, (8), 848. 41.Hogan, B. L.; Yeung, E. S., Determination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection. Analytical Chemistry 1992, 64, (22), 2841-2845. 42.Dolnik, V.; Dolnikova, J., Capillary zone electrophoresis of organic acids in serum of critically ill children. Journal of Chromatography A 1995, 716, (1-2), 269-277. 43.Lin, C. E.; Chang, C. C.; Lin, W. C.; Lin, E. C., Capillary zone electrophoretic separation of [beta]-blockers using citrate buffer at low pH. Journal of Chromatography A 1996, 753, (1), 133-138. 44.Baker, D. R., Capillary electrophoresis. Wiley: New York, 1995. 45.Khaledi, M. G., High-performance capillary electrophoresis : theory, techniques, and applications. Wiley: New York, 1998. 46.Rouessac, F.; Rouessac, A., Chemical analysis : modern instrumental methods and techniques. Wiley: New York, 2000. 47.Weinberger, R., Practical capillary electrophoresis. Academic Press: San diego, 2000. 48.Ewing, A. G.; Wallingford, R. A.; Olefirowicz, T. M., Capillary electrophoresis. Analytical chemistry 1989, 61, (4), 292A-303A. 49.Kuhn, R.; Hofstetter-Kuhn, S., Capillary electrophoresis : principles and practice. Springer-Verlag: New York, 1993. 50.Camilleri, P., Capillary electrophoresis : theory and practice. CRC Press: Boca Raton, 1998. 51.Moring, S. E.; Reel, R. T.; van Soest, R. E. J., Optical improvements of a Z-shaped cell for high-sensitivity UV absorbance detection in capillary electrophoresis. Analytical Chemistry 1993, 65, (23), 3454-3459. 52.Joel Timothy, S., Recent advancements in amino acid analysis using capillary electrophoresis. Electrophoresis 1999, 20, (15-16), 3078-3083. 53.Taga, A.; Sugimura, M.; Honda, S., Derivatization of amino acids in a moving zone of o-phthalaldehyde in the middle of a capillary for amino acid analysis by capillary electrophoresis. Journal of Chromatography A 1998, 802, (1), 243-248. 54.Taga, A.; Nishino, A.; Honda, S., Characteristic features of the throughout-capillary technique of in-capillary derivatization in capillary electrophoresis. Journal of Chromatography A 1998, 822, (2), 271-279. 55.Klampfl, C. W.; Buchberger, W.; Turner, M.; Fritz, J. S., Determination of underivatized amino acids in beverage samples by capillary electrophoresis. Journal of Chromatography A 1998, 804, (1-2), 349-355. 56.Lu, M. J.; Chiu, T. C.; Chang, P. L.; Ho, H. T.; Chang, H. T., Determination of glycine, glutamine, glutamate, and [gamma]-aminobutyric acid in cerebrospinal fluids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Analytica Chimica Acta 2005, 538, (1-2), 143-150. 57.Li, H.; Wang, H.; Chen, J.-h.; Wang, L.-h.; Zhang, H.-s.; Fan, Y., Determination of amino acid neurotransmitters in cerebral cortex of rats administered with baicalin prior to cerebral ischemia by capillary electrophoresis-laser-induced fluorescence detection. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences 2003, 788, (1), 93-101. 58.King C. Chan, G. M. M. H. J. I., Solid-state UV laser-induced fluorescence detection in capillary electrophoresis. Electrophoresis 2000, 21, (10), 2062-2066. 59.Wu, J.; Chen, Z.; Dovichi, N. J., Reaction rate, activation energy, and detection limit cerebrospinal fluid. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 741, (1), 85-88. 60.Oldenburg, K. E.; Sweedler, J. V., Simple sheath flow reactor for post-column fluorescence derivatization in capillary electrophoresis. The Analyst 1997, 122, (12), 1581-1585. 61.Gassmann, E.; Kuo, J. E.; Zare, R. N., Electrokinetic separation of chiral compounds. Science 1985, 230, (4727), 813-14. 62.Chen, D. Y.; Adelhelm, K.; Cheng, X. L.; Dovichi, N. J., A simple laser-induced fluorescence detector for sulforhodamine 101 in a capillary electrophoresis system: Detection limits of 10 yoctomoles or six molecules. The Analyst 1994, 119, (2), 349-352. 63.van de Nesse, R. J.; Velthorst, N. H.; Brinkman, U. A. T.; Gooijer, C., Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation. Journal of Chromatography A 1995, 704, (1), 1-25. 64.Durgbanshi, A.; Kok, W. T., Capillary electrophoresis and electrochemical detection with a conventional detector cell. Journal of Chromatography A 1998, 798, (1-2), 289-296. 65.Schultz, C. L.; Moini, M., Analysis of underivatized amino acids and their D/L-enantiomers by sheathless capillary electrophoresis/electrospray ionization-mass spectrometry. Analytical Chemistry 2003, 75, (6), 1508-1513. 66.Shamsi, S. A., Micellar electrokinetic chromatography-mass spectrometry using a polymerized chiral surfactant. Analytical Chemistry 2001, 73, (21), 5103-5108. 67.Christian W. Klampfl, W. A., Determination of free amino acids in infant food by capillary zone electrophoresis with mass spectrometric detection. Electrophoresis 2001, 22, (8), 1579-1584. 68.Soga, T.; Kakazu, Y.; Robert, M.; Tomita, M.; Nishioka, T., Qualitative and quantitative analysis of amino acids by capillary electrophoresis-electrospray ionization-tandem mass spectrometry. Electrophoresis 2004, 25, (13), 1964-1972. 69.Kurohara, S.; Asai, M.; Hayashi, M.; Yokoigawa, K.; Ueno, H., Microanalysis of GABA: an application for evaluating GABA production in yeast strains and the effect of spice extracts on glutamate decarboxylase activity. Journal of Biological Macromolecules 2001, 1, (2), 45-48. 70.Krull, I. S.; Deyl, Z.; Lingeman, H., General strategies and selection of derivatization reactions for liquid chromatography and capillary electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 1994, 659, (1-2), 1-17. 71.Szulc, M. E.; Krull, I. S., Improved detection and derivatization in capillary electrophoresis. Journal of Chromatography A 1994, 659, (2), 231-245. 72.Bardelmeijer, H. A.; Waterval, J. C. M.; Lingeman, H.; Van''t Hof, R.; Bult, A.; Underberg, W. J. M., Pre-, on-, and post-column derivatization in capillary electrophoresis. Electrophoresis 1997, 18, (12-13), 2214-2227. 73.Dorresteijn, R. C.; Berwald, L. G.; Zomer, G.; de Gooijer, C. D.; Wieten, G.; Beuvery, E. C., Determination of amino acids using o-phthalaldehyde-2-mercaptoethanol derivatization effect of reaction conditions. Journal of Chromatography A 1996, 724, (1-2), 159-167. 74.De Montigny, P.; Stobaugh, J. F.; Givens, R. S.; Carlson, R. G.; Srinivasachar, K.; Sternson, L. A.; Higuchi, T., Naphthalene-2,3-dicarboxyaldehyde/cyanide ion: a rationally designed fluorogenic reagent for primary amines. Analytical Chemistry 1987, 59, (8), 1096-101. 75.Stroink, T.; Paarlberg, E.; Waterval, J. C. M.; Bult, A.; Underberg, W. J. M., On-line sample preconcentration in capillary electrophoresis, focused on the determination of proteins and peptides. Electrophoresis 2001, 22, (12), 2374-2383. 76.Burgi, D. S.; Chien, R. L., Optimization in sample stacking for high-performance capillary electrophoresis. Analytical Chemistry 1991, 63, (18), 2042-2047. 77.Chien, R. L.; Burgi, D. S., Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis. Analytical Chemistry 1992, 64, (9), 1046-1050. 78.Mazereeuw, M.; Tjaden, U. R.; Reinhoud, N. J., Single capillary isotachophoresis-zone electrophoresis: current practice and prospects, a review. Journal of Chromatographic Science 1995, 33, (12), 686-697. 79.Foret, F.; Szoko, E.; Karger, B. L., On-column transient and coupled column isotachophoretic preconcentration of protein samples in capillary zone electrophoresis. Journal of Chromatography A 1992, 608, (1-2), 3-12. 80.Krivankova, L.; Bocek, P., Synergism of capillary isotachophoresis and capillary zone electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 1997, 689, (1), 13-34. 81.Osbourn, D. M.; Weiss, D. J.; Lunte, C. E., On-line preconcentration methods for capillary electrophoresis. Electrophoresis 2000, 21, (14), 2768-2779. 82.Kohlrausch, F., Displacement of concentrations by the current in solutions of electrolytes. Annalen der Physik 1897, 62, 209. 83.Stegehuis, D. S.; Irthu, H.; Tjaden, U. R.; Van Der Greef, J., Isotachophoresis as an on-line concentration pretreatment technique in capillary electrophoresis. Journal of Chromatography A 1991, 538, (2), 393-402. 84.Jandik, P.; Jones, W. R., Optimization of detection sensitivity in the capillary electrophoresis of inorganic anions. Journal of Chromatography 1991, 546, (1-2), 431-443. 85.Chien, R. L.; Burgi, D. S., Field amplified sample injection in high-performance capillary electrophoresis. Journal of Chromatography A 1991, 559, (1-2), 141-152. 86.Zhang, C. X.; Thormann, W., Head-column field-amplified sample stacking in binary system capillary electrophoresis: A robust approach providing over 1000-fold sensitivity enhancement. Analytical Chemistry 1996, 68, (15), 2523-2532. 87.Zhang, C. X.; Thormann, W., Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2. Optimization with a preinjection plug and application to micellar electrokinetic chromatography. Analytical Chemistry 1998, 70, (3), 540-548. 88.Gao, W.; Lin, S.; Chen, Y.; Chen, A.; Li, Y.; Chen, X.; Hu, Z., Nonaqueous capillary electrophoresis for rapid and sensitive determination of fangchinoline and tetrandrine in Radix Stephaniae tetrandrae and its medicinal preparations. Journal of Separation Science 2005, 28, (7), 639-646. 89.Matson, M.; Ramstad, T.; Dunn, M., Purity determination of alprostadil by micellar electrokinetic chromatography with signal enhancement involving field-amplified sample stacking and extended path length detection. Journal of Liquid Chromatography & Related Technologies 2005, 28, (20), 3181-3203. 90.Aguete, E. C.; Gago-Martinez, A.; Leao, J. M.; Rodriguez-Vazquez, J. A.; Menard, C.; Lawrence, J. F., HPLC and HPCE analysis of microcystins RR, LR and YR present in cyanobacteria and water by using immunoaffinity extraction. Talanta 2003, 59, (4), 697-705. 91.Fung, Y. S.; Mak, J. L. L., Determination of pesticides in drinking water by micellar electrokinetic capillary chromatography. Electrophoresis 2001, 22, (11), 2260-2269. 92.Gong, M.; Wehmeyer, K. R.; Limbach, P. A.; Arias, F.; Heineman, W. R., On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis. Analytical Chemistry 2006, 78, (11), 3730-3737. 93.Jung, B.; Bharadwaj, R.; Santiago, J. G., Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 2003, 24, (19-20), 3476-3483. 94.Lichtenberg, J.; Verpoorte, E.; de Rooij, N. F., Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis. Electrophoresis 2001, 22, (2), 258-271. 95.Burgi, D. S., Large volume stacking of anions in capillary electrophoresis using an electroosmotic flow modifier as a pump. Analytical Chemistry 1993, 65, (24), 3726-3729. 96.Wolf, S. M.; Vouros, P., Incorporation of sample stacking techniques into the capillary electrophoresis CF-FAB mass spectrometric analysis of DNA adducts. Analytical Chemistry 1995, 67, (5), 891-900. 97.Zhang, Y.; Zhu, J.; Zhang, L.; Zhang, W., High-efficiency on-line concentration technique of capillary electrochromatography. Analytical Chemistry 2000, 72, (22), 5744-5747. 98.Harland, G. B.; McGrath, G.; McClean, S.; Smyth, W. F., Use of large volume sample stacking for improving limits of detection in the capillary electrophoretic determination of selected cations. Analytical Communications 1997, 34, (1), 9-11. 99.Smyth, W. F.; Harland, G. B.; McClean, S.; McGrath, G.; Oxspring, D., Effect of on-capillary large volume sample stacking on limits of detection in the capillary zone electrophoretic determination of selected drugs, dyes and metal chelates. Journal of Chromatography A 1997, 772, (1-2), 161-169. 100.McClean, S.; O''Kane, E.; Coulter, D. J. M.; McLean, S.; Smyth, W. F., Capillary electrophoretic determination of trace metals in hair samples and its comparison with high performance liquid chromatography and atomic absorption spectrometry techniques. Electrophoresis 1998, 19, (1), 11-18. 101.Hissner, F.; Daus, B.; Mattusch, J.; Heinig, K., Determination of flotation reagents used in tin-mining by capillary electrophoresis. Journal of Chromatography A 1999, 853, (1-2), 497-502. 102.Martinez, D.; Borrull, F.; Calull, M., Sample stacking using field-amplified sample injection in capillary zone electrophoresis in the analysis of phenolic compounds. Journal of Chromatography A 1997, 788, (1-2), 185-193. 103.Albert, M.; Debusschere, L.; Demesmay, C.; Rocca, J. L., Large-volume stacking for quantitative analysis of anions in capillary electrophoresis II. Large-volume stacking without polarity switching. Journal of Chromatography A 1997, 757, (1-2), 291-296. 104.Aebersold, R.; Morrison, H. D., Analysis of dilute peptide samples by capillary zone electrophoresis. Journal of Chromatography A 1990, 516, (1), 79-88. 105.Hadwiger, M. E.; Torchia, S. R.; Park, S.; Biggin, M. E.; Lunte, C. E., Optimization of the separation and detection of the enantiomers of isoproterenol in microdialysis samples by cyclodextrin-modified capillary electrophoresis using electrochemical detection. Journal of Chromatography B: Biomedical Sciences and Applications 1996, 681, (2), 241-249. 106.Zhao, Y.; Lunte, C. E., pH-mediated field amplification on-column preconcentration of anions in physiological samples for capillary electrophoresis. Analytical Chemistry 1999, 71, (18), 3985-3991. 107.Xiong, Y.; Park, S. R.; Swerdlow, H., Base stacking: pH-mediated on-column sample concentration for capillary DNA sequencing. Analytical Chemistry 1998, 70, (17), 3605-3611. 108.Arnett, S. D.; Lunte, C. E., Investigation of the mechanism of pH-mediated stacking of anions for the analysis of physiological samples by capillary electrophoresis. Electrophoresis 2003, 24, (11), 1745-1752. 109.Quirino, J. P.; Terabe, S., Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromotography. Science 1998, 282, (5388), 465. 110.Bernhard Michalke, P. S., Capillary electrophoresis interfaced to inductively coupled plasma mass spectrometry for element selective detection in arsenic speciation. Electrophoresis 1998, 19, (12), 2220-2225. 111.Quirino, J. P.; Terabe, S.; Otsuka, K.; Vincent, J. B.; Vigh, G., Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfated [beta]-cyclodextrin as pseudostationary phases in electrokinetic chromatography. Journal of Chromatography A 1999, 838, (1-2), 3-10. 112.Quirino, J. P.; Kim, J. B.; Terabe, S., Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. Journal of Chromatography A 2002, 965, (1-2), 357-373. 113.Taylor, R. B.; Reid, R. G.; Low, A. S., Analysis of proguanil and its metabolites by application of the sweeping technique in micellar electrokinetic chromatography. Journal of Chromatography A 2001, 916, (1-2), 201-206. 114.Palmer, J.; Burgi, D. S.; Munro, N. J.; Landers, J. P., Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis. Analytical Chemistry 2001, 73, (4), 725-731. 115.Sera, Y.; Matsubara, N.; Otsuka, K.; Terabe, S., Sweeping on a microchip: concentration profiles of the focused zone in micellar electrokinetic chromatography. Electrophoresis 2001, 22, (16), 3509-3513. 116.Shihabi, Z. K.; Hinsdale, M. E.; Bleyer, A. J., Xanthine analysis in biological fluids by capillary electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 1995, 669, (1), 163-169. 117.Shihabi, Z. K., Peptide stacking by acetonitrile-salt mixtures for capillary zone electrophoresis. Journal of Chromatography A 1996, 744, (1-2), 231-240. 118.Shihabi, Z. K., Stacking of weakly cationic compounds by acetonitrile for capillary electrophoresis. Journal of Chromatography A 1998, 817, (1-2), 25-30. 119.Shihabi, Z. K.; Friedberg, M., Insulin stacking for capillary electrophoresis. Journal of Chromatography A 1998, 807, (1), 129-133. 120.Britz-McKibbin, P.; Chen, D. D. Y., Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Analytical Chemistry 2000, 72, (6), 1242-1252. 121.Tsukagoshi, K.; Nakamura, T.; Nakajima, R., Batch-type chemiluminescence detection cell for sensitization and simplification of capillary electrophoresis. Analytical Chemistry 2002, 74, (16), 4109-4116. 122.Taga, A.; Honda, S., Derivatization at capillary inlet in high-performance capillary electrophoresis Its reliability in quantification. Journal of Chromatography A 1996, 742, (1-2), 243-250. 123.Toyo''oka, T., Modern derivatization methods for separation sciences. Wiley: New York, 1999.
摘要: 
γ-胺基丁酸( γ-Aminobutyric acid,簡稱GABA ) 在人體中是一種重要的神經傳導物質,具有降血壓、調節心律失常、調節激素分泌等作用。而在植物中,其主要作用是調節植物中碳氮比,植物中的麩胺酸( Glutamate )轉換成琥珀酸時便會生成GABA,所以此過程被稱為GABA分路(GABA shunt),而丙胺酸( Alanine )則是在GABA分路過程中的產物,故植物中也可測出丙胺酸。
本研究中利用鄰苯二甲醛(o-Phthalaldehyde,OPA)及2-硫基乙醇 (2-Mercaptoethanol,2-ME)與γ-胺基丁酸進行衍生化反應並生成螢光衍生物,再經由毛細管電泳/螢光偵測分析。由於鄰苯二甲醛的衍生化反應快速,故採用管柱內( in-capillary )衍生化,使樣品在管柱內直接衍生化並分離,於最佳衍生化條件下分析γ-胺基丁酸及丙胺酸,其線性濃度範圍介於0.05-5.0µM,線性相關係數分別為0.9995和0.9964,偵測極限各為4nM和20nM。
另外,對於γ-胺基丁酸含量較低,基質干擾較嚴重之樣品,可以結合線上濃縮方法降低偵測極限。研究結果顯示於最佳條件下分析γ-胺基丁酸及丙胺酸,其線性濃度範圍介於5.0nM-2.5µM,線性相關係數各為0.9992和0.9995,偵測極限分別為0.7nM和0.8nM。
故利用鄰苯二甲醛(o-Phthalaldehyde,OPA)及2-硫基乙醇 (2-Mercaptoethanol,2-ME)與γ-胺基丁酸進行衍生化並結合線上濃縮,可以成功的將分析物γ-胺基丁酸定量。此方法簡單且快速,利用該方法來偵測市售含有γ-胺基丁酸成分之茶包及中藥會有良好的再現性與靈敏度。

An on-column derivatization capillary electrophoresis (CE) technique has been developed to determine γ-aminobutyric acid (GABA) and alanine (Ala) in plants. GABA and Ala were derivatized with o-phthaldialdehyde / 2-mercapto-ethanol (OPA/2-ME) reproducibly to fluorescence-labeled products, and then separated by CE and monitored with a high-sensitive fluorescence detector. The labeled derivatization and CE separation conditions were optimized. The labeled derivatization with 20mM of OPA and 26.67 mM of 2-ME (mole ratio=0.75) at pH 10 offered the best sensitive detection, and the separation with 30 mM sodium tetraborate buffer (pH 10) under 21 kV achieved good selectivity within 14 min. The detection is linear in the range of 0.05 - 5µM with correlation coefficients (γ2) above 0.9960 for both GABA and Ala with detection limits of 4 and 20 nM for GABA and Ala, respectively. The recoveries were 92.47% (3.58%RSD) and 92.25% (6.46% RSD) for five determinations of GABA and Ala, respectively. The contents of GABA and Ala in teas from different manufacture processes were detected.
The on-line stacking preconcentration was also used in the analysis of GABA and Ala in Chinese herbs, posterior to a dilution of extract solution for suppressing the matrix effect. With the on-line stacking at the optium condition, the linear range of GABA and Ala are from 5.0nM to 2.5µM with the correlation coefficients (r2) above 0.9992. The detection limit are 0.7nM and 0.8nM for GABA and Ala, respectively. By the in-capillary derivatization couple with stacking, it can be successful to detect the GABA and Ala in the food sample.
URI: http://hdl.handle.net/11455/16448
其他識別: U0005-1008200615590900
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.