Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16449
DC FieldValueLanguage
dc.contributor翁駿民zh_TW
dc.contributorJin-Min Uengen_US
dc.contributor許資生zh_TW
dc.contributorTzu-Sheng Hsuen_US
dc.contributor.advisorDung-Myau Lueen_US
dc.contributor.advisor呂東苗zh_TW
dc.contributor.authorWu, Yi-Hungen_US
dc.contributor.author吳亦閎zh_TW
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:55:26Z-
dc.date.available2014-06-06T06:55:26Z-
dc.identifierU0005-1807201106570100zh_TW
dc.identifier.citation[1] 內政部,「鋼筋混凝土建築物耐震能力評估及推廣」,1999年。 [2] 蔡益超、宋裕祺、謝尚賢等,「建築物耐震評估法之修訂及視窗化研究」,2005年。 [3] 國家地震工程研究中心,「校舍結構耐震評估與補強技術手冊」第一版,2008年。 [4] 國家地震工程研究中心,「校舍結構耐震評估與補強技術手冊」第二版,2010年。 [5] 國家地震工程研究中心,「含非線性黏性阻尼器結構之減震試驗與分析」,2002年。 [6] 張國鎮、陳長佑,「既有鋼建築物加裝消能器補強之位移設計法」,2005年。 [7] Soong, T.T. and Constantinou, M.C., Passive and Active Structural Vibration Control in Civil Engineering, Springer-Verlag, New York. 1994. [8] FEMA, NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings, Reports No. 273 and 274, October, Washington, DC , 1997. [9] Chopra, Anil K., Dynamics of Structures, Prentice-Hall, New Jersey., 1995. [10] Seleemah, A.A. and Constantinou, M.C., Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers, Report No. NCEER-97-0004, National Center for Earthquake Engineering Research, Buffalo, New York,1997. [11] Sezen, H. and Moehle, J.P., “Shear strength model for lightly reinforced concrete columns,” Journal of Structural Engineering, ASCE, Vol. 130, No. 11, 1692-1703, 2004. [12] ACI Committee 318, Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Farmington Hills, MI, 2005. [13] ASCE 41-06, Seismic Rehabilitation of Existing Buildings by American Society of Civil Engineers, ASCE, 2006. [14] 日本建築學會,「鐵筋コソクリ一ト造建物の耐震性能評価指針(案),同解說(Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings,Draft )」,日本建築學會,2004 年。 [15] 涂耀賢,「低矮型RC牆暨構架之側向載重位移曲線預測研究」,國立台灣科技大學營建工程研究所博士論文,2005年。 [16] 內政部,「建築物磚構造設計及施工規範」,台北,2008年。 [17] 內政部,「建築物耐震設計規範及解說」,台北,2006年。 [18] Chopra, A. K., “Dynamics of Structures – Theory and Applications to Earthquake Engineering”, Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1999. [19] Applied Technology Council (ATC), “Seismic Evaluation and Retrofit of Concrete Buildings”, Report No. ATC-40, California, USA, 1996.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16449-
dc.description.abstractThe plans from 2009 to 2012 of Ministry of Education are respectively promoting "the plan of accelerating the older buildings'' retrofitting and rebuilding in general and vocational high school" and "the plan of accelerating the older buildings'' retrofitting and rebuilding in junior high school and elementary school." This is to solve the problem, “lack of seismic capacity of school buildings". According to the "elementary and junior high schools and school capacity Seismic Reinforcement Design work standard" of the Ministry of Education, we suggested the traditional reinforcement engineering methods such as “expansion column", "wing wall", and "shear wall". However, in the actual design process of seismic capacity reinforcement, we found that it requires a lot of demolition and reconstruction operations when adopting the traditional reinforcement engineering method. Besides, we often require the use of "big size" for the reinforcement of the base. Therefore, it caused the major problems on the engineering practice, including the time-consuming of the construction, high noise, and more waste. Is there any "effective solutions"? It is worth to explore. This essay selected the shock-absorbing method, "fluid viscous damper", as the research object. It explored the structural seismic capacities of school buildings of the "fluid viscous damper" and the traditional construction methods, "expansion column”, “wing walls ", and "shear wall", by comparing their economy, construction, and usability analysis. This is for understanding if the" fluid viscous damper" is another "effective solution” for the reinforcement of structural seismic capacity for school buildings or not.en_US
dc.description.abstract教育部計畫自民國98年至101年分別推動「加速高中職老舊校舍及相關設備補強整建計畫」及「加速國中小老舊校舍及相關設備補強整建計畫」,以期解決「校舍耐震能力不足」之問題。依教育部「高中職及國中小校舍結構耐震能力補強設計作業規範」,建議採用「擴柱」、「翼牆」、「剪力牆」等傳統補強工法,然而在實際耐震能力補強設計過程,發現採用傳統補強工法時,常需大量打除及重建作業,且基礎又常需採用「大尺寸」配合補強,不但施工費時,噪音高、廢棄物又多,造成工程實務上甚大困擾,是否有其他「有效解決方案」,值得探討。 本文選擇「液流黏性阻尼器」之減震補強工法為研究對象,探討校舍結構耐震能力以「液流黏性阻尼器」補強與傳統工法中最常使用之「擴柱」、「翼牆」、「剪力牆」補強從經濟性、施工性、使用性之效益分析比較,以瞭解「液流黏滯性阻尼器」補強是否可作為校舍結構耐震能力補強之另一「有效解決方案」。zh_TW
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目錄 iv 表目錄 v 圖目錄 vii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究內容 4 第二章 液流黏性阻尼器裝置及原理 6 2.1 液流黏性阻尼器之構造 6 2.3 液流黏性阻尼器結構之等效阻尼比 8 第三章 校舍結構耐震能力評估-NCREE系統 17 3.1 前言 17 3.2 構件塑性鉸模擬 17 3.3 非線性側推分析 28 3.4 校舍補強目標性能點之標準 29 3.5 容量震譜法 31 3.6 耐震能力評估流程 35 第四章 校舍結構以液流黏性阻尼器補強之設計 47 4.1 前言 47 4.2 替代結構原理 47 4.3 含消能裝置之評估原理 54 4.4 加裝液流黏性阻尼器之補強設計流程 56 第五章 算例分析 64 5.1 相關建築物資訊說明 64 5.2 「補強前」耐震能力評估 70 5.3 以「線性液流黏性阻尼器」補強之耐震能力評估 73 5.4 以「非線性液流黏性阻尼器」補強之耐震能力評估 77 5.5 以「擴柱」補強之耐震能力評估 83 5.6 以「翼牆」補強之耐震能力評估 88 5.7 以「剪力牆」補強之耐震能力評估 93 第六章 結論與建議 98 6.1 結論 98 6.2 建議 100 參考文獻 103 表目錄 表3-1 RC 柱彎矩非線性鉸之參數(M3 TYPE) 37 表3-2 RC 柱剪力非線性鉸之參數(V2 TYPE) 38 表3-3 RC 梁彎矩非線性鉸之參數 38 表3-4 RC 梁彎矩非線性鉸參數計算表 39 表3-5 RC 梁剪力非線性鉸之參數 39 表3-6 RC 梁剪力非線性鉸參數計算表 39 表3-7 RC 牆彎矩非線性鉸之參數 42 表3-8 RC 牆彎矩非線性鉸之參數 42 表3-9 磚牆等值斜撐軸力非線性鉸參數 44 表3-10 既有校舍補強對應475 年設計地震之性能目標標準 45 表3-11 阻尼比修正係數 45 表5-1 材料強度表 66 表5-2 磚牆相關資訊 68 表5-3 磚牆所在位置 69 表5-4 現況耐震評估統計表 71 表5-5 組尼比修正係數表 79 表5-6 液流黏性阻尼器性質需求表 80 表5-7 阻尼器補強經費估算表 82 表5-8 擴柱補強材料強度表 85 表5-9 擴柱耐震評估統計表 85 表5-10 擴柱補強經費估算表 87 表5-11 翼牆補強材料強度表 89 表5-12 翼牆耐震評估統計表 90 表5-13 翼牆補強經費估算表 92 表5-14 剪力牆補強材料強度表 94 表5-15 剪力牆耐震評估統計表 95 表5-16 剪力牆補強經費估算表 97 表6-1 耐震能力統計表 101 表6-2 補強經費(僅單向補強)統計表 101 表6-3 施工性比較表 102 表6-4 實用性比較表 102zh_TW
dc.language.isoen_USzh_TW
dc.publisher土木工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1807201106570100en_US
dc.subjectseismic capacityen_US
dc.subject耐震能力zh_TW
dc.subjectexpansion columnen_US
dc.subjectwing wallen_US
dc.subjectshear wallen_US
dc.subjectfluid viscous damperen_US
dc.subjectshock-absorbing methoden_US
dc.subject擴柱zh_TW
dc.subject翼牆zh_TW
dc.subject剪力牆zh_TW
dc.subject液流黏性阻尼器zh_TW
dc.subject減震補強工法zh_TW
dc.titleStudy on Seismic Evaluation of School Buildings Retrofitted by using Fluid Viscous Damperen_US
dc.title校舍結構以液流黏性阻尼器補強耐震能力評估之研究zh_TW
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.