Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16455
標題: 崩塌潛勢風險評估-以陳有蘭溪流域為例
Landslide risk assessment- A Case Study of Chenyolan River Basin
作者: 黃奕達
Huang, Yi-Da
關鍵字: Landslide Susceptibility;崩塌潛勢;Instability Index;Rock Engineer System;Risk Assessment;不安定指數;岩石工程系統;風險評估
出版社: 土木工程學系所
引用: 1. 李錫堤(1996),「從地形學的觀點看陳有蘭溪的賀伯風災」,地工技術,57,pp.17-24. 2. 吳俊鋐、陳樹群(2004),「崩塌潛勢預測方法於台灣適用性之初探」,中華水土保持學報,36(4),pp.295-306. 3. 吳俊鋐、陳樹群(2005),「明德水庫集水區崩塌潛勢評估模式之研究」,中華水土保持學報,37(2),pp.155-168. 4. 林銘郎、鄭富書、吳俊傑(1996),「新中橫沿線天然災害及成因分析」,地工技術,57,pp.31-44. 5. 林美聆(2003),「土石流潛勢溪流後續調查與演變趨勢觀測計畫」,行政院農委會水土保持局,臺灣. 6. 林昭遠、林家榮、鄭旭涵、劉昌文(2006),「石門水庫集水區艾利颱風土砂災因之探討」,中華水土保持學報,37(4),pp.327-336. 7. 國立中興大學環境保育暨防災科技研究中心(2009),「88莫拉克颱風勘災報告(中彰投地區) 」,國家災害防救科技中心. 8. 國立中興大學環境保育暨防災科技研究中心(2004),「敏督利颱風及七二水災勘災調查報告」,國家災害防救科技中心. 9. 張石角(2004),「太魯閣國家公園大同、大禮聯外交通設施工程之工程地形和地質之調查分析與可行性評估」,中華民國工程環境學會. 10. 陳樹群、吳俊鋐(2005),「集集地震引發九九峰地區之崩塌形態探討」,中華水土保持學報,36(1),pp.101-112. 11. 陳凱榮(1999),「中橫公路山崩潛感分級研究-以東勢—德基為例」,國立中央大學應用地質研究所碩士學位論文。 12. 陳俞旭(2008),「地震對崩塌與土石流發生影響之研究」,國立成功大學水利及海洋工程研究所博士學位論文。 13. 黃臺豐(1999),「瑞里地震誘發之山崩及其山崩潛感分析」,國立中央大學應用地質研究所碩士學位論文。 14. 楊明德、蘇東青、楊曄芬(2005),「草嶺地區土石流潛勢調查與評估」,中華水土保持學報,36(3),pp.301-312. 15. 詹錢登、李明熹、郭峰豪(2008),「以降雨因子進行土石流警戒值訂定」,行政院農委會水土保持局,臺灣. 16. 趙振平、高玉錠(2007),「不安定指數法改進模式應用於南勢溪集水區山崩潛感分析之研究」,中華水土保持學報,38 (2),pp.123-133. 17. 蘇苗彬、陳毅輝、方俊傑(2009),「應用不安定指數法於坡地崩塌之潛勢分析」,水土保持技師公會,4(1),pp.9-23. 18. Anbalagan, R., and B. Singh(1996), “Landslide hazard and risk assessment mapping of mountainous terrains — a case study from Kumaun Himalaya, India.” Engineering Geology, 43: 237-246. 19. Dai, F.C., C.F. Lee, and Y.Y. Ngai (2002), “Landslide risk assessment and management: an overview.” Engineering Geology, 64:65-87. 20. Dai, F.C., and C.F. Lee(2001),“Terrain-based Mapping of Landslide Susceptibility Using a Geographical Iinformation System : a Case Study.” Canadian Geotechnical Journal, 38: 911-923. 21. Deyle, R.E., S.P. French, R.B. Olshansky, and R.G. Paterson(1998),“Hazard Assessment:The Factual Basis for Planning and Mitigation.”Burby, R.J. (Ed.) , Confronting Natural Hazards with Land-Use Planning for Sustainable Communities, Joseph Henry Press, Washington, D.C.,119–166. 22. Gao, J., and C.P. Lo (1991) ,“GIS Modeling of Influence of Topography and Morphology on landslide occurrence in Nelson County, Virginia, U.S. A. ” Earth Surface Process and Landforms, 18:579-591. 23. Hudson, J. A. (1992),“ Rock Engineering Systems—Theory and Practice.” Ellis Horwood Limited, 184~186. 24. Hearn, G.J. (1995) ,“ Landslide and erosion hazard mapping at Ok Tedi Cooper Mine.”Engineering Geology, 28:47-60. 25. Koukis, G., and C. Ziourkas, (1991), “Slope instability phenomena in Greece: a statistical analysis” Bulletin of the International Association of Engineering Geology, 43:47-60. 26. Lin,P.S., J.Y. Lin, J.C. Hung, and M.D. Yang (2002), “Assessing debris-flow hazard in a watershed in Taiwan.” Engineering Geology, 66:295-313. 27. Wu, Y.P., and K.L. Yin (2009), “Study on risk assessment and management of landslide hazard in New Bodong County, Three Gorge Reservoir.” IEEE, Management and Service Science, 2009. MASS ''09. Wuhan ,1-4。 28. White, G. F. (1974),“ Natual hazard research: concepts, methods, and policy implications.”White, G. F. (Ed.), Oxford University Press,New York, 3–16. 29. Yang, Y. and Q.Zhang(1998), “ The Application of Neural Networks to Rock Engineering Systems (RES) .” International Journal of Rock Mechanics And Mining Sciences & Geomechanics Abstracts, 35, Issue: 6, 727-745.
摘要: 
The affecting factors of slop instability include three major factors, such as topographic data, geologic pattern, and local environment, which can be extracted from satellite images and Digital Elevation Model (DEM). Also, Instability Index, a Rock Engineering System, and a mixed method of both were adopted to result the weight of each affecting factors. By overlaying all factors through weights, a landslide susceptibility map was obtained by considering the landslide susceptibility, the scored protected targets, and the island effect. In this study, five satellite images were selected respectively after five serious disasters for Chenyoulan River Basin . Finally, the priority of construction after disaster was found and discussed for Chenyoulan River Basin , which can be a quantitative reference as making disaster mitigation strategy for the authority.

本研究利用衛星影像和數值高程模型(DEM)擷取出地形、地質、區位三大因子資料,並將各因子分級,依照崩塌程度算出各分級因子之不安定值,利用不安定指數法、岩石工程系統和混合式權重計算法分別求得權重,將所有因子依權重套疊製成崩塌潛勢圖以評估崩塌程度,並結合保全對象資料和孤島效應評估進一步做風險評估。陳有蘭溪流域為中部地區重點災害防治溪流,本研究選用對流域造成重大災情的五個事件(莫拉克颱風、辛樂克颱風、海棠颱風、敏督利颱風和桃芝颱風)之衛星影像搭配陳有蘭溪流域之數值高程模型,並將集水區依照各村里界切分乘個子區域,套疊崩塌潛勢圖、保全對象資料和孤島效應評分進行優先處理順序評分,評估其災害風險程度,並探討陳有蘭溪流域在颱風過後最需優先處置的村里和崩塌潛勢之變化趨勢。
URI: http://hdl.handle.net/11455/16455
其他識別: U0005-1808201118513800
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.