Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/16456
標題: | 強場軸配基對六配位三價鐵卟啉電子組態的影響 The Effect of Strong Field Axial Ligands on the Electronic Configuration of Six-Coordinate Iron(III) Porphyrins. |
作者: | 方雅貞 Fang, Ya-Cheng |
關鍵字: | Iron(III) porphyrins;三價鐵卟啉 | 出版社: | 化學系所 | 引用: | 1-7 參考文獻 1. Richard Dawkins,自私的基因(The Selfish Gene),天下文化出版社,1995。 2. Dickinson, R. E. In The Proteins; Neurath, H., Ed.; Academic Press: New York. 1964; Vol. 2, 634. 3. Perutz, M.; Rossman, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C. T. Nature 1960, 185, 416. 4. Takano, T.; Trus, B. L.; Mandel, N.; Mandel, G.; Kallai, O. B.; Swanson, R.; Dickerson, R. E. J. Biol. Chem. 1977, 252, 776-785. 5. Russell Timkovich, Margaret S. Cork, Robert B. Gemis, and Peter Y. Johnsont. J. Am. Chem. Soc. 1985, 107, 6069-6075. 6. Cheng. R. J. Chemistry, 1996, Vol. 54, No. 2, 45-56. 7. http:/en.wikipedia.org/ (keypoint: hemoglobin). 8. Keiji Shikama. Chem. Rev. 1998, 98, 1357-1373. 9. Weishih Wu and C. K. Chang. J. Am. Chem. Soc; 1987, 109, 3149. 10. Alexander, L. S.; Goff, H. M. J.Chem. Educ. 1982, 59, 179-182. 11. http;/en.wikipedia.org/ (keypoint: cytochromes). 12. Scheidt, W. R.; Reed, C. A. Chem. Rev. 1981, 81, 543-555. 13. Goff, H.; La Mar, G. N.; Reed, C. A. J. Am. Chem. Soc. 1977, 99, 3641-3646. 14. W.; Hobbs, J. D.; Song, X.; Simpson, M. C.; Taylor, K. K.; Ema, T.; Nelson, N. Y.; Medforth, C. J.; Smith, K. M.; Veyrat, M.; Mazzanti, M.; Ramasseul, R.; Marchon, J.-C.; Takeuchi, T.; Goddard III, W. A.; Shelnutt, J. A. J. Am. Chem. Soc. 1995, 117, 11085-11097. 15. Jentzen, W.; Ma, J.-G.; Shelnutt, J. A. Biophys. J. 1998, 74, 53-763. 16. Barkigia, K. M.; Dolores Berber, M.; Fajer, J.; Medforth, C. J.;Renner, M. W.; Smith, K. M. J. Am. Chem. Soc. 1990, 112, 8851-8857. 17. Cheng, R.-J.; Chen, P.-Y.; Gau, P.-R.; Chen, C.-C.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 2563-2569. 18. Senge, M. O.; Ema, T.; Smith, K. M. Chem. Commun. 1995, 733. 19. Cheng, R.-J.; Chen, P.-Y.; Peng, S.-M. submitted. 20. Goff, H. M. Nuclear Magnetic Resonance of Iron Porphyrins. In Iron Porphyrin.; Lever, A. B. P.; Gray, H. B., Eds.; Physical Bioinorganic Chemistry series 1; Addison-Wesley: Reading, MA, 1983, 237 21. Goff, H.M. J. Am. Chem. Soc. 1981, 103, 3714. 22. Kurland, R. J.; McGarvey, B. R. J. Magn. Resonance. 1970, 2, 286.23. 24. Jesson, J. P. The Paramagnetic Shift. In NMR of Paramagnetic Molecules.; La Mar, G. N., Horrocks, W. D., Holm, R. H., Eds.; Academic Press: New York, 1973, 1-53. 25. McConnell, H. M. J. Chem. Phys. 1956, 24, 764. 26. Walker, F. A. Proton NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins. In The Porphyrin Handbook.; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:, 2000, Vol. 5, 165-299. 27. Karplus, M.; Fraenkel, G. K. J. Chem. Phy. 1961, 35, 1312. 28. La Mar, G. N.; Walker, F. A. Nuclear Magnetic Resonance of Paramagnetic. In the Porphyrins. 1st.; Dolphin, D., Eds.; Academic Press: New York, 1979, Vol. 4, 61-157. 29. La Mar, G. N. Biological Applications of Magnetic Resonance. In Biological Applications of Magnetic Resonance.; Shulman, R. G., Eds.; Academic Press: New York, 1979; pp 305-343. 30. Walker, F. A.; Simonis, U. Proton NMR Spectroscopy. In NMR of Paramagnetic Molecules.; Berliner, L. J., Reuben, J., Eds.; New York, 1993, Vol. 12,133. 31. Shokhirev, N. V.; Walker, F. A. J. Phys. Chem. 1995, 99, 17795. 32. Gouterman, M. J. Chem. Phys. 1959, 30, 1139. 33. Zerner, M. C. Semiempirical Molecular Orbital Methods Ed. ; Lipkowitz, K. B. and Boyd, D. B., Ed.;VCH Publishers: New York, 1991; Vol. 2, 313-365. 34. Zerner, M. C. Intermediate Neglect of Differential Overlap Calculations on the Electronic Spectra of Transition Metal ComplexesEd.;Russo, N. and Salahub, D. R., Ed.;Kluwer Academic Publishers: Netherlands, 1996, Vol. 2, 493-531. 35. Edwards, W. D.; Diercksen, G. H. F.; Zerner, M. C. J. Mol. Struct. (Theochem). 1989, 199, 137-148. 36. Mispelter, J.; Momenteau, M.; Lhoste, J. M. J. Chem. Soc., Chem. Commun. 1979, 808-810. 37. 陳炳宇,中興大學化學系博士論文,2001. 38. Ghosh, A.; Gonzalez, E.; Vangberg, T. J. Phys. Chem. B. 1999, 103, 1363-1367. 39. Rothemund, P. J. J. Am Chem. Soc. 1935, 57, 2010. 40. Rothemund, P. J.; Menotti, G. D. J. Am Chem. Soc. 1941, 63, 267. 41. Alder, A. D.; Sklar, L.; Longo, F. R. J. Heterocycl. Chem. 1968, 5, 669. 42. Sessler, J. L.; Mozaffari, A.; Johnson, M. R. Org. Synth. 1991, 70, 68. 43. Ono, M.; Lattmann, R.; Imomota, K.; Lehmann, C.; Fruh, T.; Eschenmoser, A. Croat. Chem.Acta 1985, 58, 627. 44. Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew, Chem. Int. Ed. Engl. 1971, 10, 330. 45. Whitlock, H. W.; Hanauer, R. J. J. Org. Chem. 1968, 33, 2169. 46. Eisner, U.; Lichtarowicz, A.; Linstead, R. P. J. Chem. Soc. 1957, 733. 47. Inhoffen, H. H.; Fuhrhop, J. H.; Voigt, H.; Brockmann, J. R. F. Ann. Chem. 1966, 695, 183. 48. Siedel, W.; Winkler, F. F. Ann. Chem. 1943, 554, 162. 49. Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098. 50. Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron 1990, 46, 7483. 51. Ono, N.; Kawamura, H.; Bougauchi, M.; Maruyama, K. Tetrahedron. 1990, 46. 52. Aoyagi, K.; Haga, T.; Toi, H.; Aoyama, Y.; Mizutani, T.; Ogoshi, H. Bull. Chem. Soc. Jpn 1997, 70, 937. 53. Dolphin, D. J. Heterocyclic Chem. 1970, 7, 275. 54. Evens, B.; Smith, K. M.; Fuhrhop, J. H. Tetrahedron Lett. 1977, 443. 55. Lindsey, J.; Wagner, R. J. Org. Chem. 1987, 52, 827-836. 56. Ono, N.; Hironaga, H.;Simizu, K.;Ono, K.; Kuwano, K; Ogawa, K. J. C. S. Chem. Comm. 1994, 1019-1020 57. Lightner, D. A. ; Xie, M. Tetrahedron. 1994, 50, 8579-8596. 58. Lightner, D. A. ; Nogales, D. F. ; Anstine, D. T. Tetrahedron. 1993, 49, 2185-2200 59. Lightner, D. A. ; Byun, Y. S. J. Org. Chem. 1991, 56, 6027-6033 60. (a) Walker, F. A.; Simonis, U. Proton NMR Spectroscopy of ModelHemes. In NMR of Paramagnetic Molecules; Berliner, L. J., Reuben, J.,Eds.; Plenum Press: New York, 1993; Biological Magnetic Resonance,Vol. 12, 133-274. (b) Walker, F. A. In The Porphyrin HAndbook; Kadish, K. M., Smith, K.M., Guilard, R., Eds,; Academic Press: San Diego, 2000; Vol. 5, Chapter 36, 81-183. 61. Nakamura, M.; Tajima, K.; Tada, K.; Ishizu, K.; Nakamura, N. Inorg. Chim. Acta. 1994, 224, 113-124. 62. La Mar, G. N.; Gaudio, J. D.; Frye, J. S.; Biochim. Biophys. Acta, 1977, 498, 422- 435. 63. Simonneaux, G.; Hindre, F.; Plouzennec, M. L. Inorg. Chem. 1989, 28, 823-825. 64. Safo, M. K.; Gupta, G. P.; Watson, C. T.; Simonis, U.; Walker, F. A.; Scheidt, W. R. J. Am. Chem. Soc. 1992, 114, 7066-7075. 65. Safo, M. K.; Walker, F. A.; Raitsimring, A. M.; Walters, W. P.; Dolata, D. P.; Debrunner, P. G.; Scheidt, W. R. J. Am. Chem. Soc. 1994, 116, 7760-7770. 66. Cheesman, M. R.; Walker, F. A. J. Am. Chem. Soc. 1996, 118, 7373- 7380. 67. Walker, F. A.; Nasri, H.; Turowska-Tyrk, I.; Mohanrao, K.; Watson, C. T.; Shokhirev, N. V.; Debrunner, P. G.; Scheidt, W. R. J. Am. Chem. Soc. 1996, 118, 12109-12118. 68. Safo, M. K.; Marlys, J. M.; Walker, F. A.;Debrunner, P. G.; Scheidt, W. R. J. Am. Chem. Soc. 1997, 119, 9438-9448. 69. Pilard, M.-A.; Guillemot, M.; Toupet, L.; Jordanov, J.; Simonneaux, G. Inorg. Chem. 1997, 36, 6307-6314. 70. Geze, C.; Legrand, N Bondon, A., Simonneaux. G. Inorg. Chim. Acta. 1992, 195, 73-76. 71. Nakamura, M.; Nakamura, N. Chem. Lett. 1991, 1885-1888. 72. Nakamura, M.; Ikeue. T.; Neya, S.; Funasaki, N.; Nakamura, N.Inorg. Chem.1996, 35, 3731-3732. 73. Nakamura, M.; Ikeue. T.; Fujii, H.; Yoshimura, T. J. Am. Chem. Soc. 1997, 119, 6284-6291. 74. Nakamura, M.; Ikeue. T.; Fujii, H.; Yoshimura, T.; Tajima, K. Inorg. Chem. 1998, 37, 2405-2414. 75. Wojaczynski, J.; Latos-Grazynski, L.; Glowiak, T. Inorg. Chem. 1997, 36, 6299- 6306. 76. Wolowiec, S.; Latos-Grazynski, L.; Mazzanti, M.; Marchon, J.-C. Inorg. Chem. 1997, 36, 5761-5771. 77. Wolowiec, S.; Latos-Grazynski, L.; Toronto, D.; Marchon, J.-C. Inorg. Chem. 1998, 37, 724-732. 78. Takahia Ikeue, Yoshiki Ohgo, Takashi Saiyoh, Tatsuya Yamaguvhi, and Mikio Nakamura. Inorg. Chem. 2001, 40, 3423-3434. 79. 趙家瑋,中興大學化學系碩士論文,2005。 80. (a) Wilkinson, G. Nature 1951, 168, 514. (b) Simonneaux, G.; Bondon, A.; Brunel, C.; Sodano, P. J. Am. Chem. Soc. 1988, 110, 7637. (c) Bondon, A.; Simonneaux, G. Biophys. Chem. 1990, 37, 407. (d) Brunel, C.; Bondon, A.; Simonneaux, G. J. Am. Chem. Soc. 1994, 116, 11827. 81. (a) Bondon, A.; Petrinko, P.; Sodano, P.; Simonneaux, G. Biochim. Biophys. Acta 1986, 872, 163. (b) Simonneaux, G.; Bondon, A.; Sodano, P. Inorg. Chem. 1987, 26, 3636. (c) Brunel, C.; Bondon, A.; Simonneaux, G. Biochim. Biophys. Acta 1992, 1101, 73 . (d) Brunel, C.; Bondon, A.; Simonneaux, G. Eur. J. Biochem. 1993, 214, 405. 82. (a)Wiley, R. A.; Sternson, L. A.; Sasame, H. A.; Gillette, J. R. Biochem. Pharmacol. 1972, 21, 3235. (b) Mansuy, D.; Duppel, W.; Ruf, H. H.; Ullrich, V. Hoppe-Seyler’s Z. Physiol. Chem. 1974, 355, 1341. (c) White, R. E.; Coon, M. J. J. Biol. Chem. 1982, 257, 3073. (d) Anderssson, L. A.; Sono, M.; Dawson, J. H. Biochim. Biophys. Acta 1983, 748, 341. 83. (a) Sono, M.; Dawson, J. H.; Hager, L. P. Inorg. Chem. 1985, 24, 4339. (b) Sono, M.; Dawson, J. H.; Hall, K.; Hager, L. P Biochemistry 1986, 25, 347. (c) Sono, M.; Hager, L. P.; Dawson, J. H. Biochim. Biophys. Acta 1991, 1078, 351. 84. (a) Schejter, A.; Plotkin, B.; Vig, I. FEBS Lett. 1991, 280, 199. (b) Legrand, N.; Bondon, A.; Simonneaux, G.; Shejter, A. Magn. Reson. Chem. 1993, 31, S23. (c) Legrand, N.; Bondon, A.; Simonneaux, G. Inorg. Chem. 1996, 35, 1627. 85. (a) Ruf, H. H.; Wende, P. J. Am. Chem. Soc. 1977, 99, 5499. (b) Ruf, H. H.; Wende, P.; Ullrich, W. J. Inorg. Biochem. 1979, 11, 189. (c) Sodano, P.; Simonneaux, G. Inorg. Chem. 1988, 27, 3956. (d) Toupet, L.; Sodano, P.; Simonneaux, G. Acta Crystallogr. 1990, C46, 1631. 86. (a) Spiro, T. J.; Burkle, J. M. J. Am. Chem. Soc. 1976, 98, 5482. (b) La Mar, G.; Del Gaudio, J. Bioinorg. Chem. 1977, 2, 207. (c) Ohya, T.; Morohoshi, H.; Sato, M. Inorg. Chem. 1984, 23, 1303. (d) Stynes, D. V.; Fletcher, D.; Chen, X. Inorg. Chem. 1986, 25, 3483. (e) Belani, R. M.; James, B. R.; Dolphin, D.; Rettig, S. T. Can. J. Chem. 1988, 66, 2072. (f) Simonneaux, G.; Sodano P. Inorg Chem. 1988, 27, 3956. (g) Mink, L. M.; Christensen, K. A.; Walker, F. A. J. Am. Chem. Soc. 1992, 114, 6930. (h) Mink, L. M.; Polam, J. R.; Christensen, K. A.; Bruck, M. A.; Walker, F. A. J. Am. Chem. Soc. 1995, 117, 9329. (i) Polam, J. R.; Wright, J. L.; Christensen, K. A.; Walker, F. A.; Flint, H.; Grodzicki, M.; Trautwein, A. X. J. Am. Chem. Soc. 1996, 118, 5272. 87. Rahman, M. M.; Liu, H. Y.; Ericks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1. 88. Guillemot, M.; Toupet, L.; Simonneaux, G. Inorg. Chem. 1996, 35, 6334. 89. Takahisa Ikeue; Yoshiki Ohgo; Takashi Saitoh; Mikio Nakamura; Hiroshi Fujii; Masataka Yokoyama; J. Am. Chem. Soc. 2000, 122, 4068-4076. 90. Liliya A. Yatsunyk and F. Ann Walker; Inorg. Chem. 2004, 43, 4341-4352. 91. M. Neal Golovin; Md. Matlur Rahman; John E. Belmonte; Warren P. Giering; Organometallics, 1985, 4, 1981. 2-7 參考文獻 1. Alder, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476. 2. Dolphin, D.; Rousseau, K. Tetrahedron. Letters. 1974, 4251-4254. 3. Smith, K. M.; Barnett, G. H.; Hudson, M. F. J. Chem. Soc. Perkin I 1975, 1401-1403. 4. Fanning, J. C.; Settin, M. F. Inorg. Chem. 1988, 27, 1431-1435. 5. Takahisa Ikeue, Yoshiki Ohgo, Takashi Saitih, Tatsuya Yamaguchi, and Mikio Nakamura. Inorg. Chem.2001, 40, 3423. 6. G. Simonneaux, F. Hindre, and M. Le Plouzennec. Inorg. Chem.1989, 28823-825. 7. Jentzen, W.; Simpson, M. C.; Hobbs, J. D.; Song, X.; Ema, T.; Nelson, N. Y.; Medgorth, C. J.; Smith, K. M. J. Am. Chem. Soc. 1995, 117, 11085. 8. Ema, T.; Senge, M. O.; Nelson, N. Y.; Ogoshi, H.; Smith, K. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 1879. 9. Neya, S.; Yodo, H.; Funasaki, N. J. Heterocyclic Chem. 1993, 30, 549. 10. Neya, S.; Funasaki, N. J. Heterocyclic Chem. 1997, 34, 689. 11. 簡智賢, 中興大學化學系碩士論文, 2000 12. Hartman, G. D.; Weinstock, L. M. In Organic Synthesis, 620 13. Ono, N. Bull. Chem. Soc. Jpn 1988, 61, 4470-4472. 14. Ferrand, J. C.; Schneider, R.; Gerardin, P.; Loubinoux, B. Synthetic communications. 1996, 26, 4329-4336. 15. Hartman, G. D.; Weinstock, L.M. In Organic Synthesis, pp 620-624 16. Lindesy, J. S.;C., S. I.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J. Org. Chem .;1987, 52, 827-836. 17. Cheng, D. O.; Bowman, T. L.; LeGoff, E. Heterocyclic Chem.; 1976, 13, 1145-1146 18. 陳雅萍, 中興大學化學系碩士論文, 2003 19. G. M. Atkins, Jr. and E. M. Burgess, J. Am. Chem. Soc., 1968, 90, 4744; A. Hassner and C. Styumer, Organic Synthesis Based On Name Reactions and Unnamed Reactions, Pergamon, Oxford, 1994, p.56. 20. James Moffat, Marvin V. Newton, and Geraid J. Papenmeier. J. Org. Chem .;1962, 27, 4058. 21. Roland Obrecht, Rudolf Herrmann, Ivar Ugi. Synthesis, 1985.400-402. 22. Organic Syntheses 23. Siobhan M. Creedon, H. Kevin Crowley, Daniel G. Mccarthy. J.Chem. Soc., Perkin Trans. 1. 1998, 1015-1017. 3-8 參考文獻 1. D.J.Leggett; Computational Methods for the Determination of Formation Constant. 2. 李長浤,中興大學化學系碩士論文,2003。 3. Takahia Ikeue; Yoshiki Ohgo; takashi Saiyoh; Tatsuya Yamagguvhi; Mikio Nakamura; 2001, Inorg.Chem., 40, 3432. 4. Simonneaux,G.; Hindre,F.; Plouzennec,M.L.; 1989, Inorg.Chem., 28, 823. 5. Liliya A.Yatsunyk; F.Ann Walker; 2004, Inorg.Chem., 43, 4341. 6. Pilard,M.-A.; Guillemot,M.; Toupet,L.; Jordanov,J.; Simonneaux, G.; 1997,Inorg.Chem., 36, 6307. 7. Walker, F.Ann; Nasri,H.; Turowska-Tyrk,I.; Mokhanrao,K.; Watson,C.T.; Shokhirev,N.V.; Debrunner,P.G.; Scheidt,W.R.; 1996, J.Am.Chem.Soc., 118, 12109. 8. 趙家瑋,中興大學化學系碩士論文,2005。 9. Mispelter,J.; Biological Magnetic Resonance; NMR of Paramagnetic Molecules Chapter 6,299; 1993, 12, 10. Peter Turner; 1994, Inorg.Chem., 33, 1406. 11. Karplus,M.; Fraenkel,G.K.; 1961, J.Chem.Phys., 35, 1312. 12. Mikio Nakamura; Takahisa Ikeue; Hiroshi Fujii; Tetsuhiko Yoshimura; 1997, J.Am.Chem.Soc., 119, 6284. | 摘要: | 論文摘要 六配位三價鐵卟啉具有重要的生物意義,受到不同軸配基的影響可以呈現各種不同的電子組態。含氮軸配基如咪唑(Im)等大都使其呈現典型低自旋(dxy2 dxz,yz3, S = 1/2)電子組態;強場軸配基、好的π接受者則可能導致不尋常低自旋(dxz,yz4 dxy1, S = 1/2)電子組態,並伴隨著大環的皺摺變形。已知皺摺變形使得金屬dxy軌域和大環a2u軌域對稱相同,可以發生鍵結作用,是形成不尋常低自旋(dxz,yz4 dxy1, S = 1/2)電子組態的主要原因。至於馬鞍型變形以及強場軸配基對六配位三價鐵卟啉電子組態的影響則是本論文的主題。 先前針對氰基錯合物[FeP(CN)2]-(P = TPP、TiPP、OETPP)的研究顯示,軸配基配位原子13CN的化學位移呈現明顯的差異,除了受電子組態的影響,同時也與大環的變形有關。文中進一步測得[Fe(OMTPP)(CN)2]- 之13CN化學位移為-2182 ppm,顯示馬鞍型變形程度增加,錯合物的磁方向性減少,與EPR結果相符。 已知馬鞍型變形導致卟啉大環a2u軌域能量上升,較易被氧化;而異氰基為好的π接受者,有利於低氧化態的穩定。當異氰基配位於馬鞍型三價鐵卟啉,是否可能產生不尋常的二價鐵卟啉π陽離子自由基,是個很耐人尋味的問題。本文中結合NMR與理論計算的分析深入探討一系列錯合物[FeP(CNtBu)2]+(P = TPP、TiPP、OMTPP、OETPP、OET(p-OMe)PP),顯示馬鞍型變形系統確實存在部分二價鐵卟啉π陽離子自由基電子組態的貢獻。延續這樣的思考邏輯,相信透過軸配基和卟啉大環的修飾,我們有機會使這種不尋常的電子組態更加穩定。論文中對亞磷酸鹽(P(OMe)3)軸配基的性質也做了初步的研究。 |
URI: | http://hdl.handle.net/11455/16456 | 其他識別: | U0005-1208200603175200 |
Appears in Collections: | 化學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.