Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16477
標題: 以微波輔助合成離子液體應用於微波輔助頂空固相微萃取之研究
Microwave assisted synthesis of room-temperature ionic liquids and applying in microwave assisted headspace solid-phase microextration
作者: 汪建興
Wang, Jian-Shing
關鍵字: ionic liquids;離子液體
出版社: 化學系所
引用: 第五章 參考文獻 [1] A. Nefzi, M. Giulianotti, L. Truong, S. Rattan, J.M. Ostresh, R.A. Houghten, Journal of Combinatorial Chemistry 4 (2002) 175. [2] F.H. Hurley, T.P. Wier, Jr., Journal of the Electrochemical Society 98 (1951) 203. [3] H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryoung, Journal of the American Chemical Society 97 (1975) 3264. [4] J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Inorganic Chemistry 21 (1982) 1263. [5] J.S. Wilkes, M.J. Zaworotko, Journal of the Chemical Society, Chemical Communications 13 (1992) 965. [6] J.D. Holbrey, K.R. Seddon, Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry 8 (1999) 2133. [7] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Green Chemistry 3 (2001) 156. [8] M. Balcan, D.-F. Anghel, Colloids and Surfaces, A: Physicochemical and Engineering Aspects 221 (2003) 1. [9] J.G. Huddleston, R.D. Rogers, Chemical Communications 16 (1998) 1765. [10] A.G. Fadeev, M.M. Meagher, Chemical Communications 3 (2001) 295. [11] T.-F. Jiang, Y.-L. Gu, B. Liang, J.-B. Li, Y.-P. Shi, Q.-Y. Ou, Analytica Chimica Acta 479 (2003) 249. [12] L.A. Blancard, D. Hancu, E.J. Beckman, J.F. Brennecke, Nature (London) 399 (1999) 28. [13] A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis, Jr., R.D. Rogers, Environmental Science and Technology 36 (2002) 2523. [14] A.E. Visser, R.P. Swatloski, W.M. Reichert, S.T. Griffin, R.D. Rogers, Industrial & Engineering Chemistry Research 39 (2000) 3596. [15] A.E. Visser, R.P. Swatloski, S.T. Griffin, D.H. Hartman, R.D. Rogers, Separation Science and Technology 36 (2001) 785. [16] G.-T. Wei, Z. Yang, C.-J. Chen, Analytica Chimica Acta 488 (2003) 183. [17] D.W. Armstrong, L. He, Y.-S. Liu, Analytical Chemistry 71 (1999) 3873. [18] J.L. Anderson, J. Ding, T. Welton, D.W. Armstrong, Journal of the American Chemical Society 124 (2002) 14247. [19] J.L. Anderson, D.W. Armstrong, Analytical Chemistry 75 (2003) 4851. [20] L. He, W. Zhang, L. Zhao, X. Liu, S. Jiang, Journal of Chromatography, A 1007 (2003) 39. [21] R. Kaliszan, M.P. Marszall, M.J. Markuszewski, T. Baczek, J. Pernak, Journal of Chromatography, A 1030 (2004) 263. [22] X. Xiao, Z. Liang, L. Xia, S. Jiang, Analytica Chimica Acta 519 (2004) 207. [23] E.G. Yanes, S.R. Gratz, A.M. Stalcup, Analyst 125 (2000) 1919. [24] E.G. Yanes, S.R. Gratz, M.J. Baldwin, S.E. Robison, A.M. Stalcup, Analytical Chemistry 73 (2001) 3838. [25] B. Cabovska, G.P. Kreishman, D.F. Wassell, A.M. Stalcup, Journal of Chromatography, A 1007 (2003) 179. [26] M. Vaher, M. Koel, M. Kaljurand, Electrophoresis 23 (2002) 426. [27] M. Vaher, M. Koel, M. Kaljurand, Journal of chromatography. A 979 (2002) 27. [28] W. Qin, S.F.Y. Li, Electrophoresis 23 (2002) 4110. [29] P. Wasserscheid, W. Keim, Angewandte Chemie, International Edition 39 (2000) 3772. [30] R.S. Varma, V.V. Namboodiri, Chemical Communications 7 (2001) 643. [31] V.V. Namboodiri, R.S. Varma, Tetrahedron Letters 43 (2002) 5381. [32] B.M. Khadilkar, G.L. Rebeiro, Organic Process Research & Development 6 (2002) 826. [33] M. Deetlefs, K.R. Seddon, Green Chemistry 5 (2003) 181. [34] N.E. Leadbeater, H.M. Torenius, H. Tye, Tetrahedron 59 (2003) 2253. [35] J.-M. Leveque, J.-L. Luche, C. Petrier, R. Roux, W. Bonrath, Green Chemistry 4 (2002) 357. [36] Q. Jin, F. Liang, H. Zhang, L. Zhao, Y. Huan, D. Song, TrAC, Trends in Analytical Chemistry 18 (1999) 479. [37] F.E. Smith, E.A. Arsenault, Talanta 43 (1996) 1207. [38] S.K. Hong, D.K. Anestis, J.G. Ball, M.A. Valentovic, G.O. Rankin, Toxicology Letters 14 (2002) 133. [39] 陳敦禮, "永大最新實用化學化工辭典" (1997). [40] 周荃, "硝基氯苯及其衍生物在農藥中的應用",JiangSu Chemical Industry (1997.8) 14. [41] 李佳珍, 化學工業出版社 (1997).
摘要: 
近年來,隨著環保意識的高漲,以具有揮發性低、不易燃等特性的“綠色溶劑”-離子液體(ionic liquids)取代傳統具有毒性及揮發性高的有機溶劑是必然的趨勢。其特性包含:具高極性、高熱穩定性、無蒸氣壓、低毒性、低熔點與高電化學穩定度等。由於離子液體獨特的化性與物性,使它廣泛地應用至各化學研究領域,如分離、合成反應、電化學與催化反應等。本研究主要目的是探討離子液體的綠色合成與其在綠色分析技術之應用,實驗中所使用的離子液體以咪唑環類為主,研究包含藉由微波輔助離子液體的合成與其在微波輔助頂空萃取法上的應用。
離子液體的合成方式在傳統上主要以迴流加熱進行,不僅耗費冗長的時間,而且產率並不高;本研究以微波輔助咪唑類離子液體[Omim]Cl 的合成,不但加快反應的進行,使傳統製備方式需耗時24-72 小時以上的反應縮短在15 分鐘以內完成;也提高產物的產率至90%以上。更進一步的以微波輔助交換四氟硼酸陰離子反應製備[Omim]BF4,也能在5 分鐘內完成反應,研究中以H-NMR 來鑑定反應產物。
研究中也利用離子液體低揮發性及熱穩定性的特性,以非水溶性離子液體取代有機溶劑,結合微波輔助頂空固相微萃取技術(MA-HS-SPME)及氣相層析電子捕捉偵測器,萃取分析土壤樣品及水樣品中的硝基苯類化合物。探討不同性質的咪唑類離子液體,修飾劑的種類及添加量,對萃取效果的影響。
研究中發現,添加醇類修飾劑對萃取效果有明顯的增加,尤其以添加乙醇有最佳的效果,在最佳化條件下進行硝基苯類化合物之分析,在介於5 ~100 ng 添加濃度範圍有線性關係,相關係數為0.9998 ~ 0.9999,各化合物偵測極限介於0.0514~0.147ng 之間,以此方法應用在真實土壤樣品的分析,回收率在92.4%~95.5%之間,RSD 在1.28~2.63%之間,於水樣品中回收率介於81.9%~87.6%,RSD 在3.46~5.38%之間,研究結果顯示應用離子液體應用在微波輔助頂空固相微萃取技術結合氣相層析儀做偵測,為一操作簡便,快速,不需使用大量有機溶劑的綠色化學檢測方法,利用本技術來分析水樣品及土壤樣品中殘留硝基氯苯類化合物具有良好的再現性與靈敏度。

Room temperature ionic liquids have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. In this work, we have developed a very efficient, quick, and practical method for the preparation of 1-alkyl-3-methylimidazolium halides under microwave irradiation. An efficient microwave-assisted preparation of
1-alkyl-3-methylimidazolium chloride has reduced the reaction time from several hours to a few minutes in a process that avoids the use of a large excess of organic
solvents as the reaction medium. The reaction time was drastically reduced as compared to conventional methods, and good yields were obtained. Based on the non-volatility of room temperature ionic liquids, 1-octyl-3-methylimidazolium tetrafluoroborate ([C8MIM][BF4]) IL was employed as an advantageous extraction solvent for microwave assisted headspace solid-phase microextraction
(MA-HS-SPME) of nitrochlorobenzene compounds in real samples. Then, the SPME holder was injected directly into the GC/ECD system for determination. Under the optimum conditions, the linear range was from 5 to 100 ng and limit of detections were between 0.05-0.15 ng. The relative recoveries of nitrochlorobenzene compounds from farm soils at spiking levels of 75 ng were 92.4-95.5%. MA-HS-SPME is a very simple and rapid method that eludes the use of a large extra of organic solvents as the extraction medium. It also has high recoveries and sensitivity for extraction of nitrochlorobenzene compounds from farm soils.
URI: http://hdl.handle.net/11455/16477
其他識別: U0005-1508200613455400
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.