Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1649
標題: 具被動式傾角變化之垂直軸風力發電機設計與模擬
Design and Simulation of VAWT with Passive Pitch Angle Variation
作者: 孫三益
Sun, San-Yi
關鍵字: VAWT;垂直軸風力發電機;pitch angle variation;computational fluid dynamics;mesh model;eccentric rotation;傾角變化;計算流體力學;網格模型;偏心轉動
出版社: 機械工程學系所
引用: [1] BP,BP Statistical Review of World Energy, June 2009 [2] ECROC (Energy Commission of the Republic of China), 1998.White Paper of Energy Policy of the Republic of China. Taipei,Taiwan. [3] 經濟部能源局,http://www.moeaboe.gov.tw/oil102/oil1022010/index.html [4] Climatic Research Unit, http://www.cru.uea.ac.uk/cru/info/warming/gtc2007.pdf [5] United Nations Framework Convention on Climate Change, http://unfccc.int/2860.php. [6] German Renewable Energies Agency Information Platform, http://www.unendlich-viel-energie.de/uploads/media/AEE_Durchblick_Erneuerbare_Energien_jul10.pdf," p6, Der volle Durchblick -- in Sachen Ernererbare Energien" [7] The Renewable Energy Policy Network for the 21st Century, “REN21_GSR_2010_full_revised Sept2010,” p16, http://www.ren21.net/ [8] Central Weather Bureau “ http://www.cwb.gov.tw/V6/education/encyclopedia/me016.html”, Taiwan [9] J.F. Manwell, J.G. McGowan and A.L. Rogers., Wind energy explained :theory, design and application, John wiley and Sons, Ltd, pp. 247-252,2002. [10] Darrieus GJM. Turbine having its rotating shaft transverse to the flow of the current, US Patent No. 1.835.018, 1931. [11] Mark H. Worstell, “Aerodynamic Performance of the 17 Meter Diameter Darrieus Wind Turbine,” Sandia report, SAND78-1737, 1978 [12] http://www.eolecapchat.com/e_index.html [13] Yann Staelens, F. Saeed and I. Paraschivoiu, “A Straight-Bladed Variable-Pitch VAWT Concept for Improved Power Generation,” 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6-9 January 2003. [14] IS Hwang, SY Min, IO Jeong, YH Lee, and SJ Kim “Efficiency improvement of a new vertical axis wind turbine by individual active control of blade motion,” Proc. SPIE, Vol. 6173, 617311 (2006). [15] Brian Kinloch Kirke,”Evaluation of Self-Starting Vertical axis Wind Turbines for Stand-Alone Application,” Ph.D. Dissertation, School of Engineering, Griffith University, April 1998. [16] Josh DeCoste, Aaron Smith, Dylan White, Daniel Berkvens, and Jody Crawford, “Self-Starting Darrieus Wind Turbine,” Dalhousie University, Department of Mechanical Engineering, Project Report MECH 4020, April 8, 2004. [17] prandtl, L., “Fluid Motion with Very Small Friction (in. German),” Proceedings of the Third International Congress no Mathematics, Heidelberg, 1904; English translation available as NACA TM 452, March 1928. [18] South, P., Mitchell, R., Jacobs, E., “Strategies for the Evaluation of Advanced Wind Energy Concepts,” Solar Energy Research Institute USA, SERI/SP-635-1142, 1983. [19] Ion Parashivoiu, Wind Turbines Design with Emphasis Darrieus Concept,Canada : Polytechnique ,2002,pp.147-188 [20] Gregory F. Homicz ,“Numerical Simulation of VAWT Stochastic Aerodynamic Loads Produced by Atmospheric Turbulence: VAWT-SAL Code” , Sandia National Laboratories Albuquerque,N. M.87185-580 [21] Janna, William S., “introduction to fluid mechanics,” CRC Pr I Llc, 2009 [22] 江帆與黃鵬,FLUENT高級應用與案例分析。 [23] 于勇,張俊明和姜連田,FLUENT入門與進階教程。 [24] MatWeb , http://www.matweb.com/. [25] 經濟部工業局99年度機械產業藍領及白領人才培訓計畫,ANASYS結構分析技術,課程講義,羅佐良講師。 [26] 陳德民、魏創鋒與張克濤等人,精通ADAMS 2005/2007虛擬樣機技術。
摘要: 
長久以來因為垂直軸風力發電機發電效率偏低,導致發展狀況受限,因此本文主要為研究如何提升垂直軸風力發電機的發電效率,以增加垂直軸風力發電機的競爭力。
本文主要是利用被動式的傾角變化來改善垂直軸風力發電效率,為了驗證改變傾角變化能提升空氣流過葉片所產生的氣動升力,則使用了CFD流體分析軟體FLUENT來做流場的計算;起初先選定使用翼型為對稱系列的NACA0018,接著建立本文所設計的垂直軸風力發電機網格模型,分為3D結構與2D結構,其中2D結構為3D結構的橫切剖面,再來為了驗證所建立的網格可靠度與收斂性,因此做了一連串的測試與檢驗。本文所設計的垂直軸風力發電機是具有傾角變化,為了在軟體中實現傾角變化的現象,因此自行使用C語言寫定運動路徑函數與速度函數,並透過軟體中的使用者自訂函數功能,來加以操控葉片的運動方式,用以求得改變傾角後所產生的氣動力狀態。
接續透過數值分析軟體所計算出來的氣動負載,使用CAD設計軟體Solidworks,來設計本文所需求的垂直軸風力發電機,並且實現本文所探討的被動式傾角變化之功能;此功能最主要為使用偏心轉動的概念,讓兩個不同圓心的圓互相作用,使葉片位於不同角度時,所產生的傾角變化也不同,以達到提升氣動力的效果。最後為了確認所設計的產品可以安全的運作,因此透過靜態模擬與動態模擬的方式來進行檢測。
使用CAE數值分析軟體ANSYS來計算靜態結構,將FLUENT所計算出來極端風速作用於葉片上各分量的最大力與扭矩,施加在ANSYS中設計模型的相對位置上,來測試各個零件與機構的受力狀況與應力問題,並確定受到此氣動力作用,本文所設計的垂直軸風力發電機是安全無虞。而動態模擬則透過機構分析軟體ADAMS將風力發電機於動態轉動時,氣動力作用於葉片上的總力與渦輪轉動時造成葉片的離心力做耦合,並求得當風力發電機渦輪轉動時,葉片上所承受的各分量的力與扭矩,再透過ANSYS中的設計模型,將ADAMS所計算出來的力與扭矩施加在相對位置上,來測試各個零件與機構的受力狀況與應力問題,並確定受到此氣動力作用產生轉動後,本文所設計的垂直軸風力發電機是安全無虞。

Due to their low efficiencies, the development of vertical axis wind turbines (VAWTs) has been limited for a long time. Thus, the aim of this study is to improve VAWT efficiency by utilizing passively varying pitch angle of blades. In order to demonstrate the concept and to compute the flow field as well as the aerodynamic forces acting on blades when air passes through the blades of a wind turbine with varying blade pitch angle, the computational fluid dynamics (CFD) software - FLUENT is used.
The symmetrical series NACA0018 is selected as the airfoil of the designed wind turbine. Next, we mesh the 2D and 3D gride structure of the designed VAWT model, where 2D gride structure is a cross section of the 3D grid structure. For the simulation of the aerodynamics of wind turbine with varying blade pitch angle, C language is used to define the motion and velocity pathes of blades as functions of blade azimuth angle. Via the user-defined function of FLUENT, the motion of blade can be described in a desired fashion. Through this procedure, the aerodynamic states of a VAWT with varying blade pitch angle can be calculated.
Next, the aerodynamic loadings calculated by CFD are used to design the VAWT using CAD software - Solidworks. The designed VAWT includes the future of blade pitch angle variation. The fundamental concept of the variation of blade pitch angle is based on an eccentric rotation, in which through the rotation of two eccentrically placed circles the blade pitch angle changes azimuthally. Thus, the performance of the designed wind turbine can be substantially improved. In order to ensure the safety of the operation, static as well as dynamic analyses of the wind turbine are performed.
For the static structural analyses, the finit element software - ANSYS is used. The maximum forces and torques calculated by FLUENT are applied to turbine blades to calculate the loading states and stress states for each components of the wind turbine. For the dynamic structural analyses, the kinematic analysis software - ADAMS is used. To calculate the reaction forces at the joints dynamically, the aerodynamic forces at a given operating condition calculated by FLUENT are applied. After combining the forces acting on blades, the inertia force and the centrifugal force due to the rotation, the joint forces can be calculated. These forces are then used to qualifiy the kinematic components of the design wind turbine using ANSYS to ensure the safety of operation of the wind turbine.
URI: http://hdl.handle.net/11455/1649
其他識別: U0005-2208201115522100
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.