Please use this identifier to cite or link to this item:
標題: Study on the characteristics of bottom boundary layer flow induced by a solitary wave propagating over a sloping bottom
孤立波於斜坡淺化過程之底床邊界層 流場特性探討
作者: 余旻軒
Yu, Min-Shiuan
關鍵字: solitary wave;孤立波
出版社: 土木工程學系所
引用: 1. 林 呈 (1989):「應用流場可視化法及LDV探討斜坡上波動內部流場及底部邊界層之特性」,國立成功大學水利及海洋工程研究所博士論文。 2. 林 呈、鄭中南、顏光輝、蔡清標 (1996):「層流波動邊界層之速度量測與底部剪應力之評估探討」,中華民國力學期刊,第十二卷, 第二期, 第267- 278頁。 3. 鄭中南 (1996):「波動底部邊界層特性之實驗探討」,國立中興大學土木工程研究所碩士論文。 4. 張淞傑 (2004):「應用流場可視化與PIV技術於孤立波通過淺堤周邊渦流流場之研究」,國立中興大學土木工程研究所碩士論文。 5. 張錦鑲 (2006):「應用流場可視化與PIV系統於孤立波通過對稱穴槽之渦流特性研究」,國立中興大學土木工程研究所碩士論文。 6. 黃彥霖 (2007):「孤立波底部邊界層流場特性之實驗研究」,國立中興大學土木工程研究所碩士論文。 7. 謝世圳 (2008):「建置具高時間解析度之PIV系統並應用於圓柱近域尾流特性之探討」,國立中興大學土木工程研究所博士論文。 8. 余詩敏 (2008):「孤立波底板邊界層之流場特性探討」,國立中興大學土木工程研究所碩士論文。 9. 何宗浚 (2009):「孤立波通過不同長高比之潛沒構造物時周邊渦流流場特性探討」,國立中興大學土木工程研究所博士論文。 10. 謝世圳、林 呈、余詩敏 (2009):「孤立波底床邊界層之流場特性探討」,第三十一屆海洋工程研討會論文集,第37 ~ 42頁。 11. Cowen, E. A., and Monismith, S. G. (1997). “A Hybrid Digital Particle Tracking Velocimetry Technique.” Experiments in Fluids, 22, 199-211. 12. Cowen, E. A., Sou, I. M., Liu, P. L. F. and Raubenheimer, B. (2003). “Particle Image Velocimetry Measurements within a Laboratory-Generated swash zone.” Journal of Engineering Mechanics, 129, 1119-1129. 13. Daily, J. W., and Stephan, S. C. (1953) “Characteristics of the Solitary Wave.” Transaction of ASCE, 118. 14. Huang, C. J., and Dong, C. M. (2001). “The Interaction of a Solitary Wave and a Submerged Dike.” Coastal Engineering, 43, 265-286. 15. Heller, V., Unger, J., and Hager, W. (2005). “Tsunami Run Up—A Hydraulic Perspective.” Journal of Hydraulic Engineering, ASCE, 743-747. 16. Ippen, A. T., and Mitchell, M. M. (1957). “The Damping of the Solitary Wave from Boundary Shear Measurements.” Hydrodynamics Laboratory, Massachusetts Institute of Technology, 23. 17. Jensen, B.L., Sumer, B. M., and Fredsoe, J. (1989). “Turbulent Oscillatory Boundary Layers at High Reynolds Numbers.” Journal of Fluid Mechanics, 206, 265-297. 18. Keulegan, G. H. (1948). “Gradual Damping of Solitary Wave.” Journal Research of National Bureau Standard, 40, 607-614. 19. Liu, P. L. F., Al-Banna, K. A., Cowen, E. A. (2004). “Water Wave Induced Boundary Layer Flows above a Rippled Bed.” Advances in Coastal and Ocean Engineering: PIV and Water Waves, 9, 81-117. 20. Liu, P. L. F., and Orfila, A. (2004). “Viscous Effects on Transient Long-Wave Propagation.” Journal of Fluid Mechanics, 520, 83-92. 21. Lin, C., Ho, T. C., Chang, S. C., Hsieh, S. C., and Chang, K. A. (2005). “Vortex Shedding Induced by a Solitary Wave Propagating over a Submerged Vertical Plate.” International Journal of Heat and Fluid Flow, 26, 894-904. 22. Liu, P. L. F., Simarro, G., Van Dever, J., and Orfila, A. (2006). “Experimental and Numerical Investigation of Viscous Effects on Solitary Wave Propagation in a Wave Tank.” Coastal Engineers, 53(2/3), 181-190. 23. Liu, P. L. F., Park, Y. S., and Cowen, E. A. (2007). “Boundary Layer Flow and Bed Shear Stress under a Solitary Wave.” Journal of Fluid Mechanics, 574, 449-463. 24. Mei, C. C. (1983). “The Applied Dynamics of Ocean Surface Waves.” John Wiley & Sons. 25. Mori, N and Chang, K. A. (2003). “Introduction to MPIV,” PIV Toolbox in MATLAB, version 0.95, pp.1-13 26. Ott, E., and Sudan, R. N. (1970). “Damping of Solitary Waves.” Physics Fluids, 13, 1432. 27. Tanaka, H., Sumer, B. M., and Lodahl, C. (1998). “Theoretical and Experimental Investigation on Laminar Boundary Layers under Cnoidal Wave Motion.” Coastal Engineering, 40, 81-98.
本研究係應用具備高時間解析之PIV速度量測系統,探討孤立波於1:10斜坡上淺化過程之底部邊界層流場特性。由實驗量測結果可知,底部邊界層之速度分佈,可利用孤立波波峰通過的時間作為一區分,依照波峰通過前與通過後之速度剖面分佈的特性,將分別進行相似性分析。在孤立波之波峰通過前之底部速度剖面可用雙曲線正切函數(hyperbolic tangent)進行相似性分析。而在特徵長度尺度的選取上除了使用邊界層厚度,另外還嘗試使用位移厚度、動量厚度與能量厚度作為特徵長度尺度,以勢能區速度(up)作為特徵速度尺度,其相關係數均為0.970。於孤立波之波峰通過後,則使用雙曲線正切函數與餘弦函數的組合,進行相似性分析。並以半寬度(bm)當作特徵長度尺度,勢能區的速度up與最大負速度um之差值當作特徵速度尺度,最後無因次分析後可得一相似曲線,其相關係數為0.996。

The characteristics of bottom boundary layer flow induced by a solitary wave on 1:10 sloping bottom is experimentally investigated using the time-resolved particle image velocimetry (PIV). The velocity distribution of boundary layer can be classified into two parts for similarity analysis.Before the passing of wave crest of the solitary wave, a regression curve which consists of a hyperbolic tangent function was used to fit the velocity profiles. Corresponding characteristic values were calculated by this fitting curve. These characteristic values were used to conduct similarity analysis. Boundary layer, displacement layer momentum layer and energy layer were tried to be various length scales; and potential velocity (up) was selected as a velocity scale. Finally, four similarity curves could be obtained and all of the correlation coefficients are 0.970.After the passing of wave crest of the solitary wave, a regression curve combining both hyperbolic tangent function and cosine function was used to fit the velocity profiles. This study tried to select the subtraction of the potential velocity (up) minus the minimum velocity (um) as a velocity scale, and the half-velocity-defect (bm) as a length scale. Finally a similarity curve could be obtained for phases after the passing of wave crest and its correlation coefficients is 0.996.
其他識別: U0005-2208201115493100
Appears in Collections:土木工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.