Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16510
標題: 明渠流通過透水四面體框架之FLDV與PIV量測分析
Investigation of channel flow through tetrahedron frames with FLDV and PIV
作者: 王銘階
Wang, Ming-Jie
關鍵字: fiber-optic laser Doppler velocimeter (FLDV);光纖雷射杜普勒流速儀;tetrahedron frames;turbulence intensities;total shear stress;Reynolds stress;high time-resolution PIV system;透水框架;紊流強度;總剪應力;雷諾應力;高時間解析之PIV量測系統
出版社: 土木工程學系所
引用: 1.丁肇隆、鄭智元,框型透水潛堤之消波性實驗分析,台大工程學刊,第82期,第33-40頁,2001。 2.方富民,邊界層理論,中興大學,2010。 3.台灣省水利局,防洪工程設計手冊,1969。 4.林呈,跨河構造物防制沖刷之技術與策略研究(應用剛性或柔性攔砂堰作為橋基保護方法之評估探討),行政院公共工程委員會專案研究計畫,1999。 5.李若華、王少東、曾甄,穿越四面六邊透水框架群的水流阻力特性試驗研究,中國農村水利水電,第10期,第64-66頁,2005。 6.吳榮峰,大尺度質點影像量測法之應用-分析水面流場,國立成功大學水利及海洋工程學系碩士論文,2003。 7.吳龍華、周春天、嚴忠民、王南海,架空率桿件長寬比對四面六邊透水框架群減速促淤效果的影響,水利水運工程學報,第3期,第74~77頁,2003。 8.周永鋒,光滑明渠紊流流場水力特性之研究,中興大學土木工程研究所碩士論文,2002。 9.周根娣、顧正華、高柱、唐洪武,四面六邊透水框架尾流場水力特性,長江科學院院報,第22期,第3卷,第9-12頁,2005。 10.洪建豪,三維光滑明渠紊流流場之量測與模擬,中興大學土木工程研究所博士論文,2003。 11.洪士評,明渠流通過透水四面體框架之水力特性試驗研究,中興大學土木工程研究所碩士論文,2009。 12.章平平、張志樂,混凝土四面六邊透水框架在壩下消能設計中的應用,工程實踐與研究,第2期,2001。 13.張文捷等人,四面六邊透水框架群用於長江護岸固腳工程實例及設計要點,江西水利科技,第28卷,第1期,2002。 14.唐洪武及肖洋等人,透水框架式四面體水流結構及阻力特性研究,第五屆全國泥沙基本理論學術討論會,2002。 15.許榮中,計畫 [ 海岸環境營造計畫總檢討及改善策略研究(1/2) ], 經濟部水利署水利規劃試驗所, 2007 16.陳儷娟,以光纖雷射杜普勒測速儀量測淺水明渠流之水力特性,中興學大土木工程研究所碩士論文,1992。 17.陳逸芬,應用PIV於水躍速度場之分析探討,中興學大土木工程研究所碩士論文,2008。 18.郭耀麒、張耀澤,柔性固床工之破壞機制與保護方式水槽試驗案例研究,經濟部水利署,水利,第16期,第201-210頁,2006。 19.劉誠達,水流流經植被區域之阻力研究,國立交通大學土木工程研究所碩士論文,2008, 20.謝世圳,建置具高時間解析度之PIV系統應用於圓柱近域尾流特性之探討,中興學大土木工程研究所博士論文,2008。 21.彌津家久、中川博次、瀨谷和彥、鈴木康弘,開水路粗糙度急變流流速分佈及河床斷應力應答特性,水工學論文集,第34卷,第505~510頁,1990。 22.Carollo, F.G., Ferro. V., and Termini, D. (2002). “Flow velocity measurements in vegetated channels.”J. Hydraul. Eng., 128(7), p. 664-673. 23.Nezu, I. and Rodi, W . “Open-channel flow measurements with a laser Doppler anemometer”.J Hydraul Eng 1986; 112(5), p.335-355 24.Nezu, I. and Nakagawa, H. (1993). “Turbulent structures and bursting phenomena over roughness discontinuity in open channel flows.” turbulent structures and related environment in various water flows, Scientific Research Activities, p.122-129. 25.Nezu, I. and Nakagawa, H. (1993). “Turbulent in open-channel flows.”, Kyoto University ( in Japan ). 26.Temple, D. M. (1986). “Velocity distribution coefficients for grass-lined channels.” J. Hydraul. Eng., 113(2), p.193-205. 27.Wu, F. C., Shen, H. W. and Chou, Y. J. (1999). “Variation of roughness coefficients for unsubmerged and submerged vegetation.” J. Hydraul. Eng., 125(9), p.934-942.
摘要: 
The rigid type hydraulic structures may not be able to withstand the destructive power of the floods during typhoon seasons. It induces local scour near river bed and grade-control structure, and causes hydraulic structure failures. Therefore, it is an important research issue to know how to reduce the failure events.
Recently the use of pervious hydraulic structures in the hydraulic engineering design has an increasing trend. The main characteristic of these permeable hydraulic structures is that they may generate turbulence, retard the flows and induce sediment deposition near the structures. However, basic research related to the investigation of the physical mechanism is still limited.
In this study, a two-dimensional fiber-optic laser Doppler velocimeter ( 2D-FLDV ) was adopted to measure the flow field near the permeable tetrahedron frames. The measured independent variables include: channel slope, flow depth and measuring section. The distributions of the mean velocity, turbulence intensities, Reynolds stress and total shear stress were also analyzed.
According to the experimental results, only few rows ( N= 3 ) of tetrahedron frames are needed for the deceleration rate to reach a limit under the mild slope ( S= 0.1% ) condition. Conversely, the effect of row number is sensitive for the steep slope ( S= 1% ) condition. The deceleration rate increases with an increase of the row number, and gradually reaches a limit.
Furthermore, both high-speed camera and high power argon-ion laser are adopted in the current study to establish a high time-resolution PIV system. Measurements and analysis were performed for the steady flow fields near a tetrahedron frame under both the submerged and unsubmerged conditions. The distributions of mean velocity and turbulence intensities were analyzed to increase our understanding of the variation of the flow field near the permeable tetrahedron frame.

剛性水工結構物於颱洪時期常無法承受滾滾洪水之強大衝擊力,導致河床與固床工交界面產生局部沖刷,並造成水工結構物嚴重毀壞流失。如何減緩此等破壞機制,以提昇構造物之安全與保護工之壽命,實為一重要之研究議題。
近年來透水結構物於水利工程設計之應用頗多,其特點為減沖促淤,在拋投區可達到減緩沖刷之效果。惟目前文獻中,關於透水結構物如何增加消能功效,及其水力特性與減沖促淤機制則有待更深入之研究。
本研究首先利用二維光纖雷射杜普勒流速儀 ( 2D-FLDV ) ,於光滑明渠中進行透水框架群之減速緩流試驗,試驗量測之獨立變數包括:渠床坡度、水深、垂線位置等,主要分析項目為:平均流速剖面、紊流強度、總剪應力及雷諾應力等 。
試驗結果顯示,緩坡與陡坡條件下物理機制差異頗大,緩坡 ( S= 0.1 % ) 條件下只需較少排數(N=3),減阻效應即能達一極限值;反之,陡坡( S= 1 % )條件下,排數效應較為顯著,隨排數之增加減阻效應愈為明顯,並漸趨一極限值。
其次,利用高速攝影機及高功率氬離子雷射光源,建置具高時間解析之PIV量測系統,針對單一透水框架於浸沒與未浸沒兩種情況下進行量測與分析,主要分析項目為流場中平均速度場及紊流特性,
以利吾人對透水框架近域流場變化更深入之瞭解。
URI: http://hdl.handle.net/11455/16510
其他識別: U0005-2208201118092600
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.