Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/16529
標題: | Characteristics of Free Overfall-Impacted Supercritical Flows and Its Windows-Based Application 超臨界自由跌流沖擊流場機制研究與視窗化應用 |
作者: | Hsiao, Pin-Yen 蕭品彥 |
關鍵字: | Free Overfall Supercritical Flows;超臨界自由跌流;Impact Force;Energy Dissipation;Windows-Based Model;沖擊力;能量損失;視窗化模式 | 出版社: | 土木工程學系所 | 引用: | 1. 余常昭(1999),「明槽急變流-理論和在水工中的應用」,清華大學出版社,第182-185頁。 2. 宋爾寧(1999),「帶工法對投潭水流行為及沖刷特性之影響」,國立中興大學土木工程學系,碩士論文。 3. 林永森(1998),「Visual Basic 6 視窗程式設計經典實務篇」,旗立資訊出版社,台北市。 4. 林呈、黃文彥、顏光輝(1999),「自由跌水之舌流區內速度場的量測探討」,第11屆水利工程研討會論文集,第J35-J43頁。 5. 林呈(2005),「河川橋樑之橋墩(台)沖刷保護工法之研究(第二冊)」,交通部公路總局專案研究計畫,第8章,第70-86頁。 6. 徐垚鉉、黃宏信、劉希羿、陳正炎(2009),「長延時降雨作用下之倒V堰型出流口滯洪池視窗化研究」,水保技術,第4卷,第2期,第112-122頁。 7. 徐垚鉉(2010),「超臨界自由跌流沖擊水力特性之研究」,國立中興大學土木工程學系,碩士論文。 8. 陳正炎(1988),「堰壩投潭水躍消能近似解析之研究」,台灣水利季刊,第36卷,第4期,第72-80頁。 9. 陳正炎、郭信成(1994),「堰壩投潭之沖刷坑特性及其坡度效應研究」,第7屆水利工程研討會論文集,第B263-B274頁。 10. 陳正炎、蔡建文(1995),「堰壩投潭水流沖擊力之研究」,中華水土保持學報,第26卷,第2期,第135-144頁。 11. 陳正炎、陳威甫、蔡宗翰(2002),「視窗化滯洪池設計之研究」,中華水土保持學報,第33卷,第2期,第131-139頁。 12. 陳正炎、江昇峰、陳宏宇(2003),「視窗化應用於長延時降雨之滯洪池水理設計」,中華水土保持學報,第34卷,第2期,第101-112頁。 13. 陳建富(2002),「單階自由跌水之數值模擬」,私立中原大學土木工程學系,碩士論文。 14. 陳聖文(2000),「防砂壩下游帶工佈置之試驗研究」,國立中興大學土木工程學系,碩士論文。 15. 黃世陽、吳明哲(2000),「Visual Basic 6.0 學習範本」,文魁資訊出版社,台北市。 16. 黃宏信、謝俊賢、蕭品彥、陳正炎(2010),「應用VB程式語言於自由跌水視窗化之研究」,中華水土保持學報,第41卷,第2期,第99-108頁。 17. 張幀禎(2008),「單階自由跌水作用下坡度渠床沖擊特性之試驗研究」,國立中興大學土木工程學系,碩士論文。 18. Chanson, H.(1995). “Hydraulic design of stepped cascades, channels, weirs and spillways,” Pergamon, Oxford, UK. 19. Davis, A. C., Ellett, B. G. S., and Jacob, R. P.(1998). “Flow measurement in sloping channels with rectangular free overfall,” Journal of Hydraulic Engineering, ASCE, 124(7), 760-763. 20. Hager, W. H.(1983). “Hydraulics of plane free overfall,” Journal of Hydraulic Engineering, ASCE, 109(12), 1683-1697. 21. Henderson, F. M.(1966). “Open channel flow,” The Macmillan Publishing Companies, New York, 70-72. 22. Ippen, P. J.(1943). Engineering hydraulic, John Wiely and Sons, Inc., New York, 570. 23. Moore, W. L.(1943). “Energy loss at the base of a free over-fall,” Transactions, ASCE, 108, 1343-1360. 24. Rajaratnam, N., and Chamani, M. R.(1995). “Energy loss at drop,” Journal of Hydraulic Research, IAHR, 33(3), 373-384. 25. Rand, W.(1955). “Flow geometry at straight drop spillways,” Journal of Hydraulic Engineering, ASCE, 81, 1-13. 26. Steve, M.(2000). “Programming applications with the wireless application protocol: the complete developer’s guide,” Published by John Wiley & Sons, Inc. 27. Subramanya, K.(1986). “Flow in open channels,” The McGraw-Hill Companies, New Delhi, 21-22. 28. Tokyay, N. D., and Yidiz, D.(2007). “Characteristics of free overfall for supercritical flows,” Canadian Journal of Civil Engineering, 34(2), 162-169. 29. Vischer, D. L., and Hager, W. H.(1995). “Energy dissipater,” A. A. Balkema Book Co., Netherlands, 90-92. 30. White, M. P.(1943). “Discussion on energy loss at the base of a free over-fall,” Transactions, ASCE, 108, 1361-1364. | 摘要: | 水利工程設施常設置跌流工等水工結構物,以達消減水流能量之目的。然而跌流時水流沖擊力與剩餘能量之作用下,易導致跌流工損毀,失去原先較佳消能效果,故跌流處之沖擊力與能量損失間相互關係甚是重要。據臺灣965座防砂壩資料統計,其上游因淤砂導致渠床坡度 小於6 %者占全部防砂壩之八成二。當水流於上游渠道非水平時跌流,流況常呈超臨界流,其沖擊水力之機制為何,實應進一步探究之。 本研究推導沖擊力與能量損失之理論公式,並採定量清水流進行渠槽試驗以驗證之。試驗係改變不同渠床坡度 (=0 %、2 %、4 %及6 %)與堰壩高度 (=0.15 m、0.20 m、0.25 m及0.30 m),獲致一系列超臨界自由跌流之單寬沖擊力 與能量損失 數據,藉由迴歸分析得其經驗式,以期提供未來水工結構物設計強度時作參考之用。 又因科技日新月異,電腦之強大功能可有效輔助工程師設計水工結構物。本研究將試驗迴歸之經驗式,並結合前人研究結果,運用Visual Basic程式語言撰寫一視窗化軟體。經由本研發之視窗化模式演算後,得自由跌水流作用下之上游流況、水流特性及力與能量等數據,且呈列於圖表中,可使工程師於水工結構物之設計上更為便捷。 For energy dissipation, the cross-river structures have been widely used in both natural and artificial channels. But the structures could be damaged by the impact forces of the free overfall flows, causing the reduction of their energy dissipation efficiencies. For this reason, investigation of the relationship between the impact force and energy dissipation is very important. According to the statistics of 965 check dams in Taiwan, 82 percent of the check dams has average slope less than 6 percent due to the sediment deposition. It is worth to study the characteristics of free overfall-impacted flows and their relationship with the upstream channel bed slopes. This study is proposing to investigate the flows passing through steep sloping beds with various upstream bed slope S (0, 2, 4, and 6 %) and drops height H (0.15, 0.20, 0.25, and 0.30 m), and to identify the theory of the unit width impact force Fd and the energy dissipation ΔE. A series of experiments were carried out under the clear water, steady flow conditions to clarify the effect of water impact, and to calculate the unit width impact force Fd and the energy dissipation ΔE. A linear regressive equation between upstream bed slopes S, unit width impact force Fd and the energy dissipation ΔE was derived, which can be used to design the strengths of the hydraulic structures. Due to the rapid progress of computer technology, engineer now is able to use computers to design the hydraulic structures with remarkable computing power. This study combines the data collected in this study and the previous research results to develop a windows-based design model. It could show the upstream flow conditions, hydraulic characteristics, impact force and energy dissipation on a chart based on the calculation of the model. Therefore, designing hydraulic structures could be much faster than in the past. |
URI: | http://hdl.handle.net/11455/16529 | 其他識別: | U0005-2406201116105800 |
Appears in Collections: | 土木工程學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.