Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1658
標題: 聲射訊號應用於高速進給平台螺桿預拉及預壓特性之研究
Study of AE Signals for Ball Screw Pretension and Preload Characteristic on Feed Drive Table
作者: 高世承
Kao, Shih-Chen
關鍵字: Ball screw;滾珠導螺桿;Pretension loss;Acoustic Emission Sensor;Fast Fourier Transform;Class mean scatter criteria;預拉失效;聲射感測器;快速傅立葉轉換;群組分離準則
出版社: 機械工程學系所
引用: [1] Denkena B., Harms A., Jacobsen J., Mohring H.-C., Lange D. and Noske H., “Life-cycle Oriented Development of Machine Tools,” CRIP, pp.693~698, 2006 [2] Tokungaga Y., Igarashi T., and Sugiura T., “Studies on the Sound and Vibration of a Ball Screw” Transaction of the Japan Society of Mechanical Engineers, Part C, Vol.55, No.520. pp.2945~2950 ,1989 [3] Shimoda H., Stiffness Analysis of Ball Screw, International Journal of Japan Society of Precision Machinery Engineering, Vol.33, No.3, pp.168~172, 1999 [4] Ro P.I. and Hubbel P.I., “Model Reference Adaptive Control of Dual-mode Micro/macro Dynamics of Ball Screw for Nano-meter Motion,” ASME Journal of Dynamic Systems, Measurement and Control, Vol.115, No.1, pp.103~108, 1993 [5] Cuttino J. F., Dow T. A. and Knight B. F., “Analytical and Experimental Identification of Nonlinearities in a Single-Nut, Preload Ball Screw,” Journal of Mechanical Design, Vol.119, pp.15~19 , March, 1997 [6] Nakashima K. and Takafuji K., Stiffness of a Preloaded Ball Screw, Transactions of the Japan Society of Mechanical Engineers, Vol.53, No.492, pp.1898~1905, 1991 [7] Mike Marcu, “Calculating Ball Screw Life in Clamping Applications,” Machine Dsign, pp.104~108, July 6, 2000 [8] Shyh-Chour Huang, “Analysis of a Model to Forecast Thermal Deformation of Ball Screw Feed Drive System,” Int. J. Mach. Tools Manfact. Vol.35, pp.1099~ 1104, 1995 [9] 張明正, “NC工具機滾珠螺桿預拉機構之試製研究”, 碩士論文, 大同工學院機械工程研究所, 1992 [10] Abdullah M. Al-Ghamd , David Mba, “A Comparative Experimental Study on the Use of Acoustic Emission and Vibration Analysis for Bearing Defect Identification and Estimation of Defect Size,” Mechanical Systems and Signal Processing, Vol.20, pp.1537~1571, 2006 [11] Konig W., Kutzner K. and Schehl, “Tool Monitoring of Small Drills with Acoustic Emission,” International Journal of Machine Tools and Manufacture, Vol.32, pp.487~493, 1992 [12] Jemielniak K. and Otman O., “Tool Failure Detection Based on Analysis of Acoustic Emission Signals, ” Journal of Materials Processing Yechnology, Vol.79, pp.192~197, 1998 [13] JN Qian, L I Lu-ping, HUANG Qi, RAO Hong-de, “Research on AE Test System for Failure of Sliding Bearings Based on LabVIEW,” Instrument Technique and Sensor, No.11, pp.39~41, 2008 [14] LI Hua, XU Chun-guang, XIAO Ding-guo, HUANG Hui, ZHENG Jun, JI Wan-dong, GUO Hao, “Sound Emisson Check Technique for Rolling Bearing,” CN41-1148/TH Bearing, No.7, pp.24~26, 2002 [15] LIAO Chuan-jun, LUO Xiao-li, “Fault Monitoring and Diagnoiss System of Rotating Machines Based on AE Technique,” N.T.D., Vol.29, No.8, pp.461~464, 2007 [16] YUAN Shao-bo, “Studyon the Detecting and Analysis System for Acoustic Emission of Welding cracks Based on LabVIEW,” Electric Welding Machine, Vol.39, No.8, pp.68~72, Aug.2009 [17] Kamarthi S. V., Kumara S. R. T. and Cohen P. H., “Flank Wear Estimation in Turning Through Wavelet Representation of Acoustic Emission Signals,” JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING, Vol.122, pp.12~18, 2000 [18] LIU Wei-dong, TAO Rui, “AE Signal Classification Research,” Elementary Electroacoustic S, Vol.32, No.11, pp.35~38, 2008 [19] HIWIN, “Hiwin Ball Screw Technical Information,” 2009 [20] THK, “滾珠螺桿綜合產品目錄” [21] http://www.fujicera.co.jp/product/e/05/index.html “Introduction to Acoustic Emission Sensors” [22] Spanner, J. C., Brown, A. Hay, C.R., Notvest, K. and Pollock, A. “Foundationals of Acoustic Emission Testing,” Nondestructive Testing Handbook, 2nd Ed, No.5, pp.11~44, 1987 [23] American society for testing and materials (ASTM E610-82). “Standard Definitions of Terms Relating to Acoustic Emission,” 1999 [24] Ohtsu, M., “Source Inversion of Acoustic Emission Waveform,” Structural Eng./Earthquake Eng., 1988 [25] 林楨中,陳彥翰,陳俊瑋,「混凝土樑裂縫之音洩特性探討」,勞工安全衛生研究季刊,第15卷第3期,pp.217~228,民國95年9月 [26] 維基百科,http//zh.wikipedia.org/ [27] 奇石樂公司( Kistler )產品型錄 [28] NEC Thermo Shot產品型錄F30系列 [29] LION PRECISION公司國外官方網站,Capacitive Displacement Sensor-DMT10 [30] 陳政宇,施仁元,「電容式液面控制器之研製」,逢甲大學,自動控制工程學系專題論文,民國96年5月30日 [31] 陳宣霖,「平面磨床熱變形誤差之模型建立與實務探討」,中原大學,機械工程學系碩士論文,民國92年7月 [32] Schilling, R. J. and Harris, S. L., Fundamentals of Digital Signal Processing Using MATLAB, Thomson [33] 顏嘉良,「應用類神經網路於微細切削刀具狀態偵測之研究」,中興大學,機械工程學系碩士論文,民國97年6月 [34] 黃耀賢,「主軸振動與聲射訊號於微銑刀具磨耗監測之應用研究」,中興大學,機械工程學系碩士論文,民國99年6月 [35] 姜俊良,「聲紋辨識與動態測試應用於高速進給平台螺桿預壓失效之研究」,彰化師範大學,機電工程學系碩士論文,民國99年7月 [36] 張俊良,「以黃愕法語多尺度墒分析工具機單螺帽預壓力失效之研究」,彰化師範大學,機電工程學系碩士論文,民國99年7月 [37] 賴瑞軒,「高速滾珠螺桿振動訊號擷取與響應分析」,虎尾科技大學,機械與機電工程學系碩士論文,民國99年7月 [38] 孫明華,「預壓對滾珠螺桿磨耗之實驗探討」,中興大學,機械工程學系碩士論文,民國91年7月 [39] 黃仲賢,「應用AE技術於微細鑽孔監測」,中興大學,機械工程學系碩士論文,民國99年6月 [40] 林永學,「承受預壓力之滾珠螺桿有限元素分析」,逢甲大學,機電系機械工程碩士論文,民國98年7月 [41] 鉻鉬剛材料性質http://www.trafilix.com/en_pdf/50CrMo4.pdf
摘要: 
工具機內的傳動元件「滾珠導螺桿」會因溫升產生熱變位,而影響加工精度,所以需要對螺桿作預拉。本篇研究論文主要目的是想找出一種能判別滾珠導螺桿預拉失效的方法。預拉螺桿會直接影響的軸承,因此,藉由聲射(AE)感測器能接收材料物理波的特性,將其裝置在軸承座上,藉由預拉螺桿時會擠壓軸承,間接從軸承座上擷取訊號,並以不斷改變預拉量的方式反覆預拉螺桿來增加實驗重置性;使用快速傅立葉轉換(FFT),將時域訊號轉至頻譜訊號,並透過群組分離準則(Class mean scatter criteria)找出不同預拉下頻譜訊號間的差異量,挑選差異量最大的頻寬的波幅作能量加總來判別預拉之狀態。能量值越大代表預拉越大,實驗以預拉20μ、10μ、0μ,所以預拉20μ的波幅能量加總值是最大,而0μ是最小。實驗中,採用六種不同螺桿轉速,分別為300rpm、600 rpm、1500 rpm、1800 rpm、2700 rpm、3000 rpm ;以及三種不同螺帽預壓力,數值大小分別是最大額定動態負載的2%、4%、6%,然後將以上這些參數一併作分析探討。

The transmission component of machine tool, ball screw, will have thermal deformation due to temperature raised. It will reduce the precision of machine tool, so ball screw should be pretension. This study tries to find a method to predict pretension loss of ball screw. From some relevant scientific papers and experimental experiences, we learned that ball screw pretension should have influence on bearing. An Acoustic Emission Sensor with the feature of being able to detect elastic wave on solid material is mounted on the bearing seat. It can indirectly capture signal from the bearing seat when bearing is being compressed by pretension. Different magnitudes of ball screw pretension are tested during the experiment. Besides, time domain signal is transferred to frequency domain signal by using Fast Fourier Transform. Then through the Class mean scatter criteria, we can identify the differences among the frequency domain signals under different pretensions, and then selected the most different frequency range to calculate its sum of amplitude so as to determine the state of pretension. Total energy was bigger means that ball screw has bigger pretension. There were three magnitudes of pretension in experiment, 20μ, 10μ, 0μ.The sum of amplitude of pretension 20μ is the biggest and pretension 0μ is the smallest. In the experiment, six different ball screw rotational speeds, i.e. 300rpm, 600rpm, 1500rpm, 1800rpm, 2700rpm, 3000rpm and three kinds of preload, i.e. 2%, 4% and 6% of the ball screw maximum rating dynamic loading are taken into account for the discussion and analysis.
URI: http://hdl.handle.net/11455/1658
其他識別: U0005-2208201121362800
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.