Please use this identifier to cite or link to this item:
標題: 電解質薄膜中水份輸送對薄膜型式燃料電池性能之影響
Effect of Water Transport in Electrolyte Membrane on the Performance of a Polymer Electrolyte Fuel Cell (PEFC)
作者: 彭元奎
Peng, Yuan-Kuei
關鍵字: polymer electrolyte fuel cell (PEFC);薄膜型燃料電池;electrolyte membrane;water transport;water content;電解質薄膜;水份輸送;含水量
出版社: 機械工程學系所
引用: 1. T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model”, J. Electrochem. Soc., Vol. 138, pp. 2334-2342, 1991. 2. D. M. Bernardi, M. W. Verbrugge, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell” , J. Electrochem. Soc., Vol. 139, pp. 2477-2491, 1992. 3. X. Ren, S. Gottesfeld, “Electro-osmotic Drag of Water in Poly (perfluorosulfonic acid) Membranes” , J. Electrochem. Soc., Vol. 148, pp. 87-93, 2001. 4. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman,Van T. Smith, T. E. Springer, and S. Gottesfeld, “Water Uptake by and Transport Through Nation 117 Membranes”, J. Electrochem. Soc., Vol. 140, pp. 1041-1047, 1993. 5. T. F. Fuller , J. Newman, “Experimental Determination of the Transport Number of Waterin Nation 117 Membrane”, J. Electrochem. Soc., Vol. 139, pp 1332-1337, 1992. 6. G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano and A. Patti, “An Empirical Equation for Polymer Electrolyte Fuel Cell (PEFC) Behaviour”, J. Appl. Electrochemistry, Vol. 29, pp. 1449-1455, 1999. 7. K. Dannenberg, P. Ekdunge and G. Lindbergh, “Mathematical model of the PEMFC”, J. Appl. Electrochemistry, Vol. 30, pp. 1377-1387, 2000. 8. L. Pisani, G. Murgia, M. Valentini and B. D'Aguanno, “A Working Model of Polymer Electrolyte Fuel Cells Comparisons between Theory and Experiments”, J. Electrochem. Soc., Vol. 149, pp. 898-904, 2002. 9. Y-S Chen, H. Peng, “A Segmented Model for Studying Water Transport in a PEMFC”, J. Power Sources, Vol. 185, pp. 1179-1192, 2008. 10. M. Adachi, T. Navessin, Z. Xie, B. Frisken and S. Holdcroft, “Correlation of In-situ and Ex-situ Measurements of Water Permeation Through Nafion NRE211 Proton Exchange Membranes”, J. Electrochem. Soc., Vol. 156, pp. 782-790, 2009. 11. M. Adachi, T. Navessin, Z. Xie, F. H. Li, S. Tanaka and S. Holdcroft, “Thickness Dependence of Water Permeation through Proton Exchange Membranes”, J. Membrane Sci., Vol. 364, pp. 183-193, 2010 12. J. Chen, T. Matsuura and M. Hori, “Novel Gas Diffusion Layer with Water Management Function for PEMFC”, J. Power Sources, Vol. 131, pp.155-161, 2004. 13. S. Haji, “Analytical Modeling of PEM Fuel Cell I-V Curve”, Renewable Energy, Vol. 36, pp. 451-458,2011. 14. L. Zhang, M. Pan and S. Quan, “Model Predictive Control of Water Management in PEMFC”, J. Power Sources, Vol. 180, pp. 322-329,2008 15. S. Dutta, S. Shimpalee and J.W. Van Zee, “Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells”, J. Appl. Electrochem., Vol. 30, pp. 135-146, 2000. 16. S. Dutta, S. Shimpalee and J.W. Van Zee, “Numerical Prediction of Mass-Exchange between Cathode and Anode Channels in a PEM Fuel Cell”, Int. J. Heat Mass Trans., Vol. 44, pp. 2029-2042, 2001. 17. F. N. Buchi, G. G. Scherer, “In-situ Resistance Measurements of Nation 117 Membranes in Polymer Electrolyte Fuel Cells”, J. Electroanalytical Chemistry, Vol. 404, pp. 37-43, 1996. 18. J. T. Hinatsu, M. Mizuhata and H. Takenaka, “Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor”, J. Electrochem. Soc., Vol. 141, pp. 1493-1498, 1994. 19. S. Ge, B. Yi and P. Ming, “Experimental Determination of Electro-Osmotic Drag Coefficient in Nafion Membrane for Fuel Cells”, J. Electrochem. Soc., Vol. 153, pp. 1443-1450, 2006. 20. Y. Shibahara, H. S. Sodaye, Y. Akiyama, S. Nishijima,Y. Honda, G. Isoyama and S. Tagawa,“Effect of Humidity and Temperature on Polymer Electrolyte Membrane (Nafion 117) Studied by Positron Annihilation Spectroscopy”, J. Power Sources, Vol. 195, pp. 5934-5937, 2010.
本研究進行一個薄膜型燃料電池之模擬分析,主要在不同之操作情況下,探討薄膜中水份之輸送對此薄膜型燃料電池性能之影響。在此薄膜型燃料電池中,所使用的電解質薄膜為杜邦公司所生產的Nafion 117,在擴散層中之流體皆以氣態之形式進行擴散,而在電解質薄膜中之水份則是以液態之形式進行擴散,分析中考慮電滲透引力、擴散作用與液壓滲透對電解質薄膜內水份傳遞之影響。在此分析中,所採用之方法為一維之模式,因為在不同之操作情況下,電解質薄膜中之含水量會不同,此使得分析之結果亦不相同。模擬之結果顯示,薄膜之含水量會隨著電流密度之增加而減少,而提高陽極氫氣進氣通量、陽極擴散層之溫度、陽極與陰極進氣壓力,均會增加薄膜之含水量;而使陰極進氣壓力略大於陽極進氣壓力,或是降低陰極擴散層之溫度與減少薄膜之厚度,亦可提高薄膜之含水量。當薄膜之含水量愈大時,薄膜之電傳導係數會愈大,而電池電阻則會愈小,因此電池電壓會愈大,而燃料電池之發電性能亦會愈佳。此研究亦發現,隨著電流密度之增加,電池之發電功率具有一個峰值,同時電池之效率隨著電流密度之增加而減小。

This work deals with a simulation of the performance of a polymer electrolyte fuel cell (PEFC). The effect of water transport in membrane on the fuel cell performance was investigated. The electrolyte membrane was considered to be Nafion 117 which is a product of DuPont Company. In the diffusion layer, all fluids diffuse in form of gaseous phase; in the electrolyte membrane, water diffuses in form of liquid phase. This analysis adopted a one-dimensional model which considers the effect of electro-osmotic drag, mass diffusion due to concentration gradient and hydraulic permeability on the water transport. For different operations, distributions of water content in the electrolyte membrane are different, thus the results also be different. The simulation result shows that the water content decreases with an increase of current density. Increasing hydrogen mass flux at the inlet of anode, temperature of diffusion layer on anode side and inlet gas pressures at anode and cathode result in an increase of the water content. In addition, arranging the gas pressure on cathode side slightly greater than that on anode side, reducing the temperature of the cathode diffusion layer, or reducing the membrane thickness also increases the water content. When the water content in the membrane increases, the electric conductivity of the membrane will also increase. This makes the electric resistance be smaller. Thus the battery voltage will be greater, as well as a better power generation of the fuel cell can be achieved. It was also found that the cell power has a peak value. The cell efficiency increases with a decrease of the current density.
其他識別: U0005-2210201121105400
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.