Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16640
標題: 微波加速有機反應的研究-醯亞胺衍生物的合成
Microwave Accelerated Organic Reactions- Direct Synthesis of Imides from Dicarboxylic Acids
作者: 林智遠
Lin, Chih-Yuan
關鍵字: imides;醯亞胺;Taguchi Method;田口式
出版社: 化學系所
引用: 1. Moreira, A. L.; Corral, L. G.; Ye, W.; Johnson, B.; Stirling, D.; Muller, G. W.; Freedman, V. H.; Kaplan, G. "Thalidomide and Thalidomide Analogs Reduce HIV Type 1 Replication in Human Macrophages in Vitro" AIDS Res, Hum. Retoviruses, 1997, 13, 857. 2. Waelbroeck, M.; Lazareno, S.; Plaff, O.; Friebe, T.; Tastoi, M.; Mutschler, E.; Labert, G. "Stereoselective Recognition of The Enantiomers of Phenglutarimide and of Six Related Compounds by Four Muscarinic Receptor Subtypes" Br. J. Pharmacol 1996, 119, 1319. 3. Park, M.; Lee, J. "Synthesis and Anticonvulsant Evaluation of A Series of (R)-and (S)-N-Cbz- alpha Aminoglutarimide and Succinimide" Bioorg. Med. Chem. Lett. 1996, 6, 1297. 4. Bodansky, M.; Principle of peptide synthesis, Springer Verlag, Berlin. 1984, p150 5. a) Leung, C. S.; Rowlands, M. G.; Jarman, M.; Foster, A. B.; Griggs, L. J.; Wilman, D. E. V. "Analogues of 3-Ethyl-3-(4-pyridyl)piperidine-2,6-dione as Selective Inhibitors of Aromatase: Derivatives with Variable 1-Alkyl and 3-Alkyl Substituents" J. Med. Chem. 1987, 30, 1550. b) Knabe, J.; Wahl, S. "2,6-Piperidinediones. IV. Syntheses of the Racemates and the Enantiomers of 3,3-disubstituted 2,6-piperidinediones with Basic Side Chains" Arch. Pharm. 1987, 330, 1032. 6. Polonski, T. "Circular Dichroism Spectra and Molecular Geometry of Six-membered Ring Anhydrides and Imides" J. Chem. Soc. Perkin Trans 1. 1988, 639. 7. Galons, H.; Pham-Huy, C.; Flaih, N. "An Expeditions Synthesis of Cyclic Imides" Tetrahedron Lett. 1999, 40, 3697. 8. Doumaux, A. R.; Trecker, D. J. "Peroxide-metal Ion Oxidations" J. Org. Chem. 1970, 35, 2121. 9. Daly, M. J.; Jones, G. W.; Nicholls, P. J.; Smith, H. J.; Rowland, M. G.; Bunnett, M. A. "Synthesis and Biochemical Evaluation of Analogues of Aminoglutethimide Based on Phenylpyrrolidine-2,5-dione" J. Med. Chem. 1986, 29, 520. 10. Muller, G. W.; Chen, R.; Huang S.; Corral, L. G.; Wong, L. M.; Patterson, R. T.; Chen, Y.; Kaplan, G.; Stirling, D. I. "Amino-substituted Thalidomide Analogs: Potent Inhibitors of TNF- alpha Production" Bioorg. Med. Chem. Lett. 1999, 9, 1625. 11. Kuehne, P.; Hesse, M. " Simple synthesis of (±)-(E)-3-(4-hydroxyphenyl)-N-[4-(3-methyl-2,5-dioxo-1-pyrrolidinyl)butyl]-2-propenamide, a Novel Phenolic Amide Derivative from the Bulbs of Lilium Regale WILSON" Tetrahedron 1993, 49, 4575. 12. Mathews, J. A. " The Action of Organic Acids Upon Nitrils" J. Amer. Chem. Soc. 1898, 20, 654. 13. Kim, M. H.; Patel, D. V. "BOP as A Reagent for Mild and Efficient Preparation of Ester" Tetrahedron Lett. 1994, 35, 5603. 14. Ivanovic, M. D.; Kiricojevic, V. K; Popovic-Dordevic, J. B. "A Novel Tandem Process Leading to Functionalized Glutarimides" J. Tetrahedron Lett, 2005, 46, 2611. 15. Abusamra, A.; Morris, J. S.; Koirtyohann, S. R. "Wet Ashing of Some Biological Samples in a Microwave Oven" Anal. chem. 1975, 47, 1475. 16. a) Rao, K. J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P. A. "Synthesis of Inorganic Solids Using Microwaves" Chem. mater. 1999, 11, 882. b) De La Hoz, A.; Diaz-Ortis, A.; Moreno, A.; Langa, F. "Cycloadditions under Microwave Irradiation Conditions: Methods and Applications" Eur. J. Org. Chem. 2000, 3659. c) Lidstrom, P.; Westman, J.; Lewis, A. "Enhancement of Combinatorial Chemistry by Microwave-Assisted Organic Synthesis" Combinatorial Chemistry & High Throughput Screening 2002, 5, 441-458. d)Santagada, V.; Perissutti, E.; Caliendo, G. "The Application of Microwave Irradiation as New Convenient Synthetic Procedure in Drug Discovery" Current Medicinal Chemistry 2002, 9, 1251-1283. e) Swamy, K. M. K.; Yeh, W. B.; Lin, M. J.; Sun, C. M. "Microwave-Assisted Polymer-Supported Combinatorial Synthesis" Current Medicinal Chemistry 2003, 10, 2403. f) Das, S. K. "Application of Microwave Irradiation in the Synthesis of Carbohydrates" Synlett 2004, 915. g) Meusel, M.; Gutschow, M. "Recent Developments in Hydantoin Chemistry - A Review" Org. prep. proced. int. 2004, 36, 391-443. h) Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. "Microwave Assisted Synthesis - a Critical Technology Overview" Green Chem. 2004, 6, 128. i) Studer, A. "Tin-Free Radical Chemistry Using the Persistent Radical Effect: Alkoxyamine Isomerization, Addition Reactions and Polymerizations" Chem. Soc. rev. 2004, 33, 267. j) Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S. "Microwave-Assisted Polymer Synthesis: State-of-the-art and Future Perspectives" Macromolecular Rapid Communications 2004, 25, 1739. k) De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. "Microwaves in Organic Synthesis. Thermal and Non-thermal Microwave Effects" Chem. Soc. rev. 2005, 34, 164. l) Graebin, C. S.; Eifler-Lima, V. L. "The Use of Microwave Ovens in Solid-phase Organic Synthesis" Quimica Nova 2005, 28, 73. m)Toukoniitty, B.; Mikkola, J. P.; Murzin, D. Y.; Salmi, T. "Utilization of Electromagnetic and Acoustic Irradiation in Enhancing Heterogeneous Catalytic Reactions" Applied Catalysis a-General 2005, 279, 1. 17. Lidstrom, P.; Tinerney, J.; Wathey, B.; Westman, J. "Microwave assisted organic synthesis-a review", Tetrahedron 2001, 57, 9225. 18. Kingston, H. M.; Jassie, L. B. "Introduction to Microwave Sample Preparation: Theory and Practice" American Chemical Society: Washington, D. C., 1988. 19. Santagada, V.; Perissutti, E.; Caliendo, G. "The Application of Microwave Irradiation as New Convenient Synthetic Procedure in Drug Discovery" Current Medicinal Chemistry 2002, 9, 1251. 20. Kingston, H. M.; Jassie, L. B. "Introduction to Microwave Sample Preparation: Theory and Practice" American Chemical Society: Washington, D. C., 1988. 21. Kingston, H. M.; Jassie, L. B. "Microwave-Energy for Acid Decomposition at Elevated-Temperatures and Pressures Using Biological and Botanical Samples" Anal. chem. 1986, 58, 2534-2541. 22. Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathe, D. "New Solvent Free Organic Synthesis Using Focused Microwaves" Synthesis 1998, 1213. 23. Kappe, O. C. "Microwave-assisted Synthesis Under Continuous-flow Conditions" Macromol. Rapid Commum, 2007, 28, 395. 24. Ferro, S.; Rao, A.; Zappala`, M.; Chimirri, A.; Barreca, M. L.; Witvrouw, M.; Debyser, Z.; Monforte, P. "Synthesis of new potential HIV-1 integrase inhibitors" Heterocycles 2004, 63, 2727. 25. Kidwai, M.; Saxena, S.; Khan, M. K. R.; Thukral, S. S. "Aqua Mediated Synthesis of Substituted 2-amino-4H-chromenes and in vitro study as Antibacterial Agents" Bioorg. Med. Chem. Lett. 2005, 15, 4295. 26. 廖姿雅,″微波加速有機反應之研究 -- (一) 利用微波與超音速加速5-氰基吲哚之合成(二) 新掌性聯胺輔助之合成與應用″ 中華民國中興大學化研所,碩士畢業論文,2006年。 27. 傅凱伶,″微波加速有機反應之研究 -- (一) N-芳基鄰胺基苯甲酸衍生物之合成 (二) N-取代吡咯-2-羧醛之合成″ 中華民國中興大學化研所,碩士畢業論文,2006年。 28. 蘇朝墩 "品質工程" 中華民國品質學會 2002年 29. 田口玄一及吉澤正孝 "開發、設計階段的品質工程" 中國生產力中心 1990, 12月 30. 劉克琪 "實驗設計與田口式品質工程" 華泰書局 1994, 7月 31. 丁志華與戴寶通 "田口實驗設計法簡介" 毫微米通訊 2001, 第八卷第三期, p7. 32. a) 徐世輝 "品質管理" 三民書局 1996, 8月 b) 李輝煌 "田口方法-品質設計的原理與實務" 高立書局 2004, 8月 33. 王振宏,″微波加速有機反應之研究 -- (一) 聚3-羥丁酯降解反應(二) 合成苯并哌喃衍生物″ 中華民國中興大學化研所,碩士畢業論文,2005年。 34. 林雅香,″微波加速有機反應之研究 -- (一) 由酯類與胺類製備醯胺 (二) 由酸類與胺類製備醯胺″ 中華民國中興大學化研所,碩士畢業論文,2000年。 35. Clark, H. T.; Behr, L. D Organic Syntheses CV 2, 562. 36. Earl, R. A.; Clough, F. W.; Townsend, L. B. "Chemical Investigations of Citraconimide" J. Heterocycl. Chem. 1978, 15, 1479. 37. Arnott, D. M.; Harrison, P. J.; Henderson, G. B.; Sheng, Zhi-Chu; Leeper, F. J.; Battersby, A. R. "Synthetic Studies Relevant to Biosynthetic Research on Vitamin B12 Part 9 Synthesis of 20-methyl and 20-cyano Isobacteriochlorins" J. Chem. Soc. Perkin Trans. 1. 1989, 265. 38. Burns, J. M.; Ashley, M. E. "Photochemical Reactivity of Keto Imino Ethers Determination of the Stereochemistry of the Type I Rearrangement of 2-Ethoxypyrrolin-Sones by Natural Abundance 13C and 15N Nuclear Magnetic Resonance Spectroscopy1y" J. Am. Chem. Soc. 1977, 99, 6924. 39. Hubert, J. C.; Wijnberg, J. B. P. A.; Speckamp, W. "Sodium Borohydride Reduction of Cyclic Imides" Tetrahedron, 1975, 31, 1437. 40. Luening, U.; Seshadri, S.; Skell, P. S. "Glutarimidyl Chemistry: Substitution Reactions Mechanism of Ziegler Bromination" J. Org. Chem. 1986, 51, 2071. 41. Tlumak, R. L.; Day, J. C.; Slanga, J. P.; Skell, P. S. "Excited-State Succinimidyl and Glutarimidyl Radicals: Reversible Ring Opening" J. Am. Chem. Soc. 1982, 104, 7257. 42. Sugihara, J. M.; Schmidt, D. L.; Calbi, V. D.; Dorrence, S. M. "Displacement Reactions of Neopentyl-type Sulfonate Esters" J. Org. Chem. 1963, 28, 1406. 43. Rastetter, W. H.; Adams J. "alpha-Keto Acid Dehydrogenases: A Chemical Model " J. Org. Chem. 1981, 46, 1882. 44. Halford, J. O.; Weissmann, B. "o-Phenylenediacetimide and Other Compouds Related to 3, 1H-Benzazepine" J. Org. Chem. 1952, 17, 1646.
摘要: 
本論文報導我們以微波加速醯亞胺衍生物之合成的研究成果。
我們發現在使用家用微波爐以800 W照射2~4分鐘方式下,脂肪族五環、六環醯亞胺衍生物(2a~4d)的產率 (23~95%) 均優於使用聚焦式微波反應裝置以270 W照射13分鐘的產率 (15~73%) ,但在芳香族醯亞胺衍生物5和6,則是使用聚焦式微波反應裝置先以270 W照射2分鐘接著用180 W照射8分鐘方式下的產率 (32~91%) 優於使用家用微波爐以800 W照射2~3分鐘的產率 (13~30%) ;同時我們也利用田口式實驗方法,尋找到合成琥珀醯亞胺較佳的反應條件,將原本傳統反應需要加熱2小時降至使用家用微波爐以800 W照射4分鐘,聚焦式微波反應裝置以270 W照射13分鐘,並得到相當的產率 (66~70%) ,且使反應過程更為簡便。
但以純反應物來進行反應時,無法得到預期產物,於是我們使用了不同的固態擔體包含Amberlite XAD-4、Ambelyst 15及活性碳,其中以Amberlite XAD-4得到較佳的產率 (51%) ,故此反應必須在有固態擔體及氨水的反應條件下才會進行。
因此,我們已成功地建立一個有效利用微波,手續簡便的合成醯亞胺衍生物之方式。所以,使用微波照射來加速有機反應已被證實是有效的方法,並在工業運用上具有很大的發展潛力。

Abstract

We report herein our studies on microwave-assisted direct imide formation from dicarboxylic acids.
Aliphatic imides (2a~4d) needed 2~4 min irradiation by domestic microwave at 800 W to obtain better yields (23~95%) than those (15~73%) of focused microwave irradiated at 270 W (13 min). On the other hand, aromatic imides 5 and 6 required irradiation of 2 min at 270 W followed by 8 min at 180 W using focused microwave to afford better yields (32~91%) than those (13~30%) using domestic microwave irradiation (2~3 min). The reaction conditions for the synthesis of succinimide were optimized much more effectively utilizing Taguchi Method to find that reaction time can be greatly reduced from 2 hours in conventional method to 4 min by using domestic microwave irradiation at 800 W, and 13 min with focused microwave irradiation at 270 W, while the yields were comparable (66~70%).
The above reaction did not work under neat conditions. Consequently, different solid support such as Amberlite XAD-4, Ambelyst 15 and Charcoal has to be used. The best solid support is Amberlite XAD-4 to achieve 51% yield.
In conclusion, microwave irradiation has been proved to be an effective method in accelerating organic reactions and therefore has an immense potential in industrial applications.
URI: http://hdl.handle.net/11455/16640
其他識別: U0005-2908200715310500
Appears in Collections:化學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.