Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16643
標題: 利用核磁共振光譜儀、電子順磁共振儀及X-ray單晶繞射儀探討金屬大環錯合物M(Por)(L)n之分子結構,其中M1= 鉈、鋅、銅,por1 = (tpp-N-O);M2,3 = 汞,por2 = N-NCOC6H5-tpp,por3 =2-NCH3NCtpp
Synthesis, Characterization and Molecular Structure Studies by EPR, NMR Spectroscopy and X-Ray Single-Crystal Determination on Metalloheteroporphyrins: M(Por)(L)n, M1= Tl、Zn、Cu,por1 = (tpp-N-O);M2,3 = Hg,por2 = N-NCOC6H5-tpp,por3 =2-NCH3NCtpp
作者: 楊富安
Young, Fuh-An
關鍵字: 鉈;Tl;銅;鋅;汞;核磁共振光譜儀;電子順磁共振儀;Cu;Zn;Hg;NMR;EPR
出版社: 化學系所
引用: chapter 1 (1) Balch, A. L.; Chan, Y. W; Olmstead, M. M. J. Am. Chem. Soc. 1985, 107, 6510. (2) Li, Y. I. Chang, C. S. Tung, J. Y. Tsai, C. H. Chen, J. H. Liao, F. L. Wang, S. L. Polyhedron 2000, 413. (3) Chen, C. H. Lee, Y. Y. Liau, B. C. Elango, S. Chen, J. H. Hsieh, H. Y. Liao, F. L. Wang, S. L. Hwang, L. P. J. Chem. Soc., Dalton Trans. 2002, 3001. (4) Yang, F. A. Chen, J. H. Hsieh, H. Y. Elango, S. Hwang, L. P. Inorg. Chem. 2003, 42, 4603. (5) Chang, C. S. Chen, C. H. Li, Y. I. Liau, B. C. Ko, B. T. Elango, S. Chen, J. H. Hwang, L. P. Inorg. Chem. 2001, 40, 2905. (6) Callot, H. J. Chevrier, Weiss, B. R. J. Am. Chem. Soc. 1978, 100, 4733. (7) Mahy, J. P. Battioni, P. Mansuy, D. J. Am. Chem. Soc. 1986, 108, 1079. (8) Tung, J. Y.; Jang, J. I.; Lin, C. C.; Chen, J. H.; Hwang, L. P. Inorg. Chem. 2000, 39, 1106. (9) Shil, W. Z. Cho, K. Y. Cheng, C. W. Chen, J. H. Wang, S. S. Liao, F. L. Tung, J. Y. Hsieh, H. Y. Elango, S. Polyhedron 2006, 25, 1864. (10) Olmstead, M. M. Cheng, R. J. Balch, A. L. Inorg. Chem. 1982, 21, 4143. (11) Balch, A. L.; Chan, Y. W.; Olmstead, M. M.; Renner, M. W. J. Am. Chem. Soc. 1985, 107, 2393. (12) (a) Watanabe, H. Y. Morishima, I. Inorg. Chem. 1994, 33, 4186. ; (b) Andrews, L. E. Bonnett, R. Ridge, R. J. Appelman, E. H. J Chem. Soc., Perkin Trans. 1 1983, 103. (13) Huheey, J. E.; Keiter, E. A.; Keriter, R. L. Inorganic Chemistry, 4th ed.; Harper Collins College: New York, 1993; p117, p292. (14) Chen, J. C.; Jang, H. S.; Chen, J. H.; Hwang, L. P. Polyhedron 1991, 10, 2069. (15) Suen, S. C.; Lee, W. B.; Hong, F. E; Jong, T. T.; Chen, J. H.; Hwang, L. P. Polyhedron 1992, 11, 3025. (16) Kadish, K. M. Smith, K. Guilard, M. R. The Porphyrin Handbook, Academic Press, London, 2000, vol. 5, pp. 45-46. (17) Coutsolelos, A. G. Daphnomili, D. Inorg. Chem. 1997, 36, 4614. (18) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure form Diffraction Data, University of Gottingen (Germany), 1997. (19) Drago, R. S. Physical Methods for Chemists, 2nd edn., Saunder College Publishing, New York, 1992, pp. 290-295. (20) Jenson, J. P.; Muetterties, E. L. In Dynamic Nuclear Magnetic Resonance Spectroscopy : Jackman, L. M., Cotton, F. A., Eds.; Academic press : New York, 1975; pp 299-304. (21) Fabian, J. S. Guilleme, J. Diez, E. J. Mol. Struct. (Theochem) 1998, 426, 117. (22) Morvai, M.; Nagy, T.; Kocsis, A.; Szabo, L. F.; Podanyi, B. Magn. Reson. Chem. 2000, 98, 343. (23) Contreras, R. H.; Peralta, J. E. Prog. Nucl. Magn. Reson. 2000, 37, 321. (24) Liu, H.; Wang, Q.; Liu, L. J. Chem. Educ. 1992, 69, 783. (25) Bratsch, S. G. J. Chem. Educ. 1985, 62, 101. Chapter 2 (1 ) Balch, A. L.; Chan, Y. W.; Olmstead, M. M. J. Am. Chem. Soc. 1985, 107, 6510. (2) Balch, A. L.; Chan, Y. W.; Olmstead, M. M.; Renner, M. W. J. Am. Chem. Soc. 1985, 107, 2393. (3) Yang, F. A.; Cho, K. Y.; Chen, J. H.; Wang, S. S.; Tung, J. Y.; Hsieh, H. Y.; Liao, F. L.; Lee, G. H.; Hwang, L. P.; Elango, S. Polyhedron 2006, in press. (4) Li, Y. I.; Chang, C. S.; Tung, J. Y.; Tsai, C. H.; Chen, J. H.; Liao, F. L.; Wang, S. L. Polyhedron 2000, 19, 413. (5) Chen, C. H.; Lee, Y. Y.; Liau, B. C.; Elango, S.; Chen, J. H.; Hsien, H. Y.; Liao, F. L.; Wang, S. L.; Hwang, L. P. J. Chem. Soc. Dalton Trans. 2002, 3001. (6) Yang, F. A.; Chen, J. H.; Hsieh, H. Y.; Elango, S.; Hwang, L. P. Inorg. Chem. 2003, 42, 4603. (7) Chang, C. S.; Chen, C. H.; Li, Y. I.; Liau, B. C.; Ko, B. T.; Elango, S.; Chen, J. H.; Hwang, L. P. Inorg. Chem. 2001, 40, 2905. (8) Callot, H. J.; Chevrier, B.; Weiss, R. J. Am. Chem. Soc. 1978, 100, 4733. (9) Mahy, J. P.; Battioni, P.; Mansuy, D. J. Am. Chem. Soc. 1986, 108, 1079. (10) Tung, J. Y.; Jang, J. I.; Lin, C. C.; Chen, J. H.; Hwang, L. P. Inorg. Chem. 2000, 39, 1106. (11) Shil, W. Z.; Cho, K. Y.; Cheng, C. W.; Chen, J. H.; Wang, S. S.; Liao, F. L.; Tung, J. Y.; Elango, S. Polyhedron 2006, 25, 1864. (12) Olmstead, M. M.; Cheng, R. J.; Balch, A. L. Inorg. Chem. 1982, 21, 4143. (13) Hatfield, W. E. Inorg. Chem. 1972, 11, 216. (14) Banci, L.; Bencini, A.; Gatteschi, D. J. Am. Chem. Soc. 1983, 105, 761. (15) Boillot, M. L.; Journaux, Y.; Bencini, A.; Gatteschi, D. Inorg. Chem. 1985, 24, 263. (16) Boyd, P. D. W.; Toy, A. D.; Smith, T. D.; Pibrow, J. R. J. Chem. Soc. Dalton Trans. 1973, 1549. (17) Barker, P. J.; Stobart, S. R. Chem. Commu. 1980, 969. (18) Mengersen, C.; Subramanian, J.; Fuhrhop, J. H. Mol. Phys. 1976, 32, 893. (19) Neal, T. J.; Kang, S. J.; Schulz, C. E.; Scheidt, W. R. Inorg. Chem. 1999, 38, 4294. (20) Duggan, D.; Hendrickson, D. N. Inorg. Chem. 1974, 13, 2929. (21) Drago, R. S.; Physical Methods for Chemists, 2nd ed.; Saunders College Publishing: New York, 1992; pp 473 - 475, 591 - 593. (22) Bleaney, B; Bowers, K. D. Proc. Roy. Soc. 1952, A214, 451. (23) Eaton, S. S.; Eaton, G. R.; Chang, C. K. J. Am. Chem. Soc. 1985, 107, 3177. (24) Tsurumark, H.; Watanabe, Y.; Morishima, I. Inorg. Chem. 1994, 33, 4186. (25) Andrews, L. E.; Bonnett, R.; Ridge, R. J.; Appelman, E. H. J. Chem. Soc. Perkin Trans. 1 1983, 103. (26) Sheldrick, G. M. SHELXL-97, Program for Refinement of Crystal Structure from Diffraction Data, University of Gottingen, Germany, 1997. (27) Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J. V.; Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349. (28) Gardberg, A. S.; Doan, P. E.; Hoffman, B. M.; Ibers, J. A. Angew. Chem. Int. Ed. 2001, 40, 244. (29) Chiari, B.; Piovesana, O.; Tarantelli, T.; Zanazzi, P. F. Inorg. Chem. 1985, 24, 4615. (30) Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Inorganic Chemistry, 4th ed.; Harper Collins College: New York, 1993; pp 114, 292. (31) DiMagno, S. G.; Lin, V. S. Y.; Therien, M. J. J. Am. Chem. Soc. 1993, 115, 2513. (32) Bhyrappa, P.; Wilson, S. R.; Suslick, K. S. J. Am. Chem. Soc. 1997, 119, 8492. (33) Owen, J. J. Appl. Phys. 1961, 32, 213S. (34) Chao, C. C. J. Magn. Reson. 1973, 10, 1. (35) Scaringe, R. P.; Hodgson, D. J.; Hatfield, W. E. Mol. Phys. 1978, 35, 701. (36) Bencini, A.; Gatteschi, D. Mol. Phys. 1985, 54, 969. (37) Zheng, M.; Khangulov, S. V.; Dismukes, G. C.; Barynin, V. V. Inorg. Chem. 1994, 33, 382. (38) Bencini, A.; Gatteschi, D. EPR of Exchange Coupled Systems; Springer-Verlag: Berlin, 1990; pp 48 - 55. (39) Howard, T.; Telser, J.; DeRose, V. J. Inorg. Chem. 2000, 39, 3379. (40) Collman, J. P.; Elliott, C. M.; Halbert, T. R.; Tovrog, B. S. Proc. Natl. Acad. Sci. USA 1977, 74, 18. (41) Ross, P. K.; Allendorf, M. D.; Solomon, E. I. J. Am. Chem. Soc. 1989, 111, 4009. (42) Muto, Y.; Nakashima, M.; Tokii, T.; Suzuki, I.; Ohba, S.; Steward, O. W.; Kato, M. Bull. Chem. Soc. Jpn. 2002, 75, 511. (43) Wasserman, E.; Snyder, L. C.; Yager, W. A. J. Chem. Phys. 1964, 41, 1763. (44) Weil, J. A.; Bolton, J. R.; Wertz, J. E. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley and Sons Inc.: New York, 1994; pp 162 - 170. (45) Konishi, S.; Hoshino, M.; Imamura, M. J. Am. Chem. Soc. 1982, 104, 2057. (46) Satoh, M.; Ohba, Y,; Hoshino, M.; Konishi, S.; Ebina, F.; Yamauchi, S.; Iwaizumi, M. Bull. Chem. Soc. Jpn. 1999, 72, 2389. (47) Eaton, S. S.; More, K. M.; Sawant, B. M.; Eaton, G. R. J. Am. Chem. Soc. 1983, 105, 6560. (48) Walls, J. H. V. D.; Groot, M. S. Mol. Phys. 1959, 2, 333. (49) Groot, M. S.; Walls, J. H. V. D. Mol. Phys. 1960, 3, 190. (50) Drew, M. G. B.; Marphy, B. P.; Nelson, J.; Nelson, S. M. J. Chem. Soc. Dalton Trans. 1987, 873. (51) Chasteen, N.; Belford, R. L. Inorg. Chem. 1970, 9, 169. (52) Scheidt, W. R.; Mondal, J. U.; Eigenbrot, C. W.; Adler, A.; Radonovich, L. J.; Hoard, J. L. Inorg. Chem. 1986, 25, 795. (53) The influence of J interactions and zero-field effects on the energy levels of 3-dimer is shown at Figure S2 in the Supporting Information. (54) Blanchard, S.; Blondin, G.; Riviere, E.; Nierlich, M.; Girerd, J. J. Inorg. Chem. 2003, 42, 4568. (55) Buluggiu, E. J. Phys. Chem. Solids 1980, 41, 1175. Chapter 3 (1) Callot, H. J.; Fisher, J. ; Weiss, R. J. Am. Chem. Soc. 1982, 104, 1272. (2) Takao, Y. ; Takeda, T.; Watanabe, J.; Setsune, J. Organometallics 2003, 22, 233. (3) Setsune, J.; Yamauchi, T.; Tanikawa, S.; Hirose, Y.; Watanabe, J. Organometallics 2004, 23, 6058. (4) Setsune, J.; Yamauchi, T.; Tanikawa, S. Chem. Lett. 2002, 188. (5) Yang, F. A.; Chen, J. H.; Hsieh, H. Y.; Elango, S; Hwang, L. P. Inorg. Chem. 2003, 42, 4603. (6) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data, University of Gottingen, Germany, 1997. (7) Wang, M. C.; Sue, L.S.; Liau, B. C.; Ko, B. T.; Elango, S.; Chen, J. H. Inorg. Chem. 2001, 40, 6064. (8) Das, S.; Hung, C. H.; Goswami, S. Inorg. Chem. 2003, 42, 8592. (9) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry. 4th ed.; Harper Collins. College: New York, 1993; pp 114, 292. (10) Grdenic, D. Quart. Rev. 1965, 19, 303. [11] D. Matkovic-Calogovic, N. Davidovic, Z. Popovic and Z. Zugaj, Acta Crystallogr. C54 (1998) 1766. (11) Matkovic-Calogovic, D. Davidovic, N. Popovic, Z. Zugaj, Z. Acta Crystallogr. 1998, C54, 1766. (12) Setsune, J. J. Synthetic Organic Chemistry Japan 2004, 62, 1227. (13) Jr. Johnson C. E. Bovey, F. A. J. Chem. Phys. 1958, 29, 1012. (14) 4J(Hg-H) = 48 Hz for Hg(1)-Ph-H3, 5 of 3 was observed at 599.94 MHz in CDCl3 at 20 °C. (15) Helm, M. L.; Helton, G. P.; VanDerveer, D. G.; Grant, G. J. Inorg. Chem. 2005, 44, 5696. (16) Wrackmeyer, B.; Contreres, R. Annu. Rep. NMR. Spectoscopy, 1992, 24, 267. (17) Bebout, D. C.; Bush II, J. F.; Crahan, K. K.; Kastner, M. E.; Parrish, D. A. Inorg. Chem. 1998, 37, 4641. (18) Blake, R. P.; Lee, B.; Summers, M. F.; Park, J. B.; Zhou, Z. H.; Adams, M. W. W. New J. Chem. 1994, 18, 387. (19) Harris, R. K. Nuclear Magnetic Resonance Spectroscopy, Longman, Harlow, 1986, p. 225. Chapter 4 (1) Chmielewski, P. J.; Latos-Grazynski, L. J. Chem. Soc. Perkin Trans. 2, 1995, 503. (2) Qu, W.; Ding, T.; Cetin, A.; Harvey, J. D.; Taschner, M. J.; Ziegler, C. J. J. Org. Chem. 2006, 71, 811. (3) Schmidt. I.; Chmielewski, P. J.; Ciunik, Z. J. Org. Chem. 2002, 67, 8917. (4) Toganoh, M.; Furuta. H. Chem. Lett. 2005, 34, 1034. (5) Wang, M. C.; Sue, L. S.; Liau, B. C.; Ko, B. T.; Elango, S.; Chen, J. H. Inorg. Chem. , 2001, 40, 6064. (6) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry. 4th ed.; Harper Collins. College: New York, 1993; pp 114, 292. (7) Furuta, H; Morimoto, T.; Osuka, A. Inorg. Chem. 2004, 43, 1618. (8) Hawk, R. M.; Sharp, R. R. J. Chem. Phys. 1974, 60, 1522. (9) Ghosh, P.; Desrosiers, P. J.; Parkin, G. J. Am. Chem. Soc. 1998, 120, 10416. (10) Hsieh, H. Y.; Cheng, C. W.; Yang, F. A.; Chen, J. H.; Tung, Y. T.; Wang, S. S.; Hwang, L. P. Polyhedron, 2007 in press. (11) Gillies, D. G.; Blaauw, L. P.; Hays, G. R.; Huis, R.; Clague, D. H. J. Magn. Reson. 1981, 42, 420. (12) Benn, R. J.; Gunther, H.; Maercker, A.; Menger, V.; Schmitt, P. Angew. Chem. Int. Ed. Engl. 1982, 21, 295. (13) Brady, F.; Matthews, R. W.; Forster, M. J.; Gillies, D. G. J. Chem. Soc. Chem. Commun. 1981, 911.
摘要: 
Chapter 1

中文摘要

以X-ray 測得Tl(tpp-N-O)(OAc) 3 和 acetato-N-p-tert-butylbenzensulfonylimido-meso-tetraphenylporphyrinatothallium(III) Tl(N-p-NSO2C6H4tBu-tpp)(OAc) 5的晶體結構。3和5,以鉈為中心,其周圍的原子形成扭曲的square-based pyramid,其軸向配位基是雙芽的醋酸根。以和鉈原子鍵結的三個較強的氮原子[i. e., N(1), N(2), and N(3)]為參考平面。3和5中,分別接上oxygen 和 NSO2C6H4tBu的N(4)pyrrole,與porphyrin 的3N平面的兩面角分別為46.5° and of 46.7°。在3中,鉈原子和氧原子分別位於3N平面上1.11 and 1.34 Å。而5中,Tl3+ 和 N(5)分別在3N平面上1.15 and 1.30 Å。將3和5溶於CD2Cl2中,由變溫的1H NMR測得Tl上醋酸根的分子內交換的自由能分別為ΔG‡184 = 39.3 和ΔG‡208 = 44.1 kJ/mol。在3中,由於強陰電性取代基O(1)的影響,使得Tl上醋酸根的coupling constant 分別下降 Δ3J(Tl-C, O) = 145 Hz 和Δ2J(Tl-C, O) = 79 Hz。

Chapter 2

由X-ray分別測得銅與鋅的二聚合物[Cu(tpp–N–O)]2 (3-dimer)和[Zn(tpp–N–O)]2 (4-dimer)的分子結構。3-dimer與4-dimer,以Cu(1)或Zn(1)為中心原子,其周圍的原子(3N+2O)形成square-pyramidal,τ值分別為0.22和0.19。Cu(1)與Cu(1A)的距離和Cu(1)-O(1A)-Cu(1A)的角度分別是3.987(4) Å和148.1(3)°。Zn(1)與Zn(1A)的距離和Zn(1)-O(1A)- Zn(1A)的角度分別是4.025(3) Å和148.1(2)°。3-dimer X-band EPR粉末光譜在4K時,g║ = 2.51 [A║, s = (9.6 ± 0.2) × 10–3 cm–1], g⊥ = 2.11,由293K,ΔMs = 1的位置求出Ds = 0.0731 cm-1、同時由ΔMs = 2求出Ds = 0.0743 cm-1;銅的自旋交換偶合ΔMs = 2的訊號在g = 4.17吸收,配合Ds = 0.0743 cm-1 導出Ds主要貢獻來自於anisotropic exchange interaction Ds (ex)且Ds (ex)= 0.132 cm–1。
由理論分析3-dimer在5 – 300 K的感磁性數據求出2J = 68 cm–1, g = 2.01, p = 0.06 和TIP = 10–6 cm3/mol,由以上數據告知3-dimer是鐵磁性性物質,其基態是triplet state而激發態為singlet state,其兩者的能量差為68 cm-1。


Chapter 3
用PhHgOAc 和 N-NHCOC6H5-Htpp合成出雙汞錯化合物[Hg(Ph)(N21, N22-(Ph)-Hg-N(COPh)tpp•C6H5CH3; 3•C6H5CH3],並以X-ray鑑定其結構。在此分子的結構中,Hg(1)···Hg(2)的距離為3.611(7) Å,因此並無Hg(II)···Hg(II)的作用力。將3溶於CDCl3中,研究其1H,13C和199Hg NMR 的光譜特性。由NMR光譜證實3在solution中是雙汞錯化合物。20°C下,將3配成0.2M的溶液,觀察其199Hg NMR。Hg(2)和Hg(1)的化學位移及偶合常數分別為-1088 ppm [3J(Hg-H) = 188 Hz]和-1119 ppm [3J(Hg-H) = 177 Hz]。這是由於配位數越大,則化學位移越downfield。因此,五配位的Hg(2)比四配位的Hg(1)往左偏移31ppm。此外,由於1H和199Hg NMR光譜中觀察到3J(Hg-H)的偶合常數,可知3的ligand在CDCl3溶液中的分子間交換的速度很慢。

Chapter 4

使用PhHgOAc 和 2-NCH3NCTPPH (2)合成出汞的金屬錯化合物[HgPh(4-NCH3NCTPP); 6]。由晶體結構得知,四配位的中心金屬汞,其幾何結構為蹺蹺板型(seesaw);20°C時、量測 6 (溶於CDCl3, 0.2M)的199Hg光譜,其化學位移在-1037 ppm、汞與其軸向苯環的氫的偶和常數為 3J(Hg-H) = 172 Hz。使用599.95 MHz的NMR量測 6 (溶於CDCl3, 0.01M)的Hg-Ph-H2,6的Longitudinal relaxation time (T1)與溫度的變化。T1的最小值靠近0°C, T1是受Dipole-dipole interaction影響。

Chapter 1
The crystal structures of Tl(tpp-N-O)(OAc) 3 and acetato-N-p-tert-butylbenzensulfonylimido-meso-tetraphenylporphyrinatothallium(III) Tl(N-p-NSO2C6H4tBu-tpp)(OAc) 5 were determined. The coordination sphere around Tl3+ is a distorted square-based pyramid in which the apical site is occupied by a bidentate chelating OAc¯ group for 3 and 5. The plane of three pyrrole nitrogen atoms [i. e., N(1), N(2), and N(3)] strongly bonded to Tl3+ in 3 and 5 is adopted as a reference plane, 3N. The porphyrin ring is severely distorted and the pyrrole ring N(4) bonding to the oxygen and NSO2C6H4tBu group makes a dihedral angle of 46.5° and of 46.7° with the 3N plane for 3 and 5, respectively. In 3, Tl3+ and O(1) are located on the same side at 1.11 and 1.34 Å from its 3N plane, while in 5, Tl3+ and N(5) are still located on the same side at 1.15 and 1.30 Å from its 3N plane. The free energy of activation at the coalescence Tc for the intermolecular acetate exchange process of 3 and 5 in CD2Cl2 is found to be ΔG‡184 = 39.3 and ΔG‡208 = 44.1 kJ/mol, respectively, through 1H NMR variable temperature measurements.
An electronegative substituent, O(1), bonded to Tl in 3 causes a significant negative contribution up to 145 Hz for Δ3J(Tl-C, O) and 79 Hz for Δ2J(Tl-C, O) of OAc¯ in 3.


Chapter 2
The crystal structures of the dimer form of copper(II) tetraphenylporphyrin N-oxide [Cu(tpp-N-O)]2 (3-dimer) and zinc(II) tetraphenylporphyrin N-oxide [Zn(tpp-N-O)]2 (4-dimer) were established. The geometry at the copper ion in 3-dimer is essentially square-pyramidal with one oxygen bridge [O(1A)] occupying the apical site giving much larger Cu-O bond distance compared to those at the basal plane. The Cu‧‧‧Cu distance and Cu-O-Cu angle in the core of 3-dimer lie at 3.987(4) Å and 148.1(3)°. The Zn(1) atom in 4-dimer has a distorted square-pyramidal [4 + 1] coordination geometry that gives a τ value of 0.19. The Zn‧‧‧Zn distance and Zn-O-Zn angle in the dimeric unit of 4-dimer are 4.025(3) A and 148.1(2)°. The 3-dimer displays axial X-band EPR spectral features (Es = 0) in the powder state at 4 K giving g║ = 2.51 [A║, s = (9.6 ± 0.2) × 10-3 cm-1], g⊥= 2.11 and in the same powder state at 293 K giving Ds = 0.0731 cm-1 (as derived from ΔMs = 1 lines) or 0.0743 cm-1 (as derived from the ΔMs = 2 lines). In addition, 3-dimer displays a ΔMs = 2 transition at g = 4.17 indicating the presence of spin-exchange coupling. The anisotropic exchange interaction (Ds(ex)= 0.132 cm-1) gives the main contribution to Ds in 3-dimer. The theoretical fit of the susceptibility and effective magnetic moment data of 3-dimer in the temperature range 5 - 300 K gives 2J = 68 cm-1, g = 2.01, p = 0.06 and temperature independent paramagnetism TIP = 10-6 cm3/mol. This magnetic susceptibility data indicates that the copper(II) ions in 3-dimer are coupled in a ferromagnetic manner with the ground-spin triplet stabilized by 68 cm-1 with regard to the singlet.

Chapter 3
Reaction of PhHgOAc with N-NHCOC6H5-Htpp gave a bismercury(II) complex of [((benzamido-κN)phenylmercury-κHg-N21, N22)-meso-tetraphenylporphyrinato-N23, N24]phenylatomercury(II) toluene solvate [Hg(Ph)(N21, N22-(Ph)-Hg-N(COPh)tpp‧C6H5CH3; 3‧C6H5CH3] with Hg(1)-N(5) as a N21, N22 -bridged atoms. The crystal structure of 3‧C6H5CH3 was determined. The Hg(1)· · · Hg(2) distance is 3.611(7) A. Hence, no metallophilic Hg(II)···Hg(II) interaction may be anticipated. 3 in CDCl3 was characterized by 1H, 13C, and 199Hg NMR. The 199Hg NMR for a 0.2 M solution of 3 in CDCl3 at 20°C is observed at -1088.3 ppm for Hg(2) nucleus with 3J(Hg-H) = 188 Hz and an effective coordination number of five and at -1118.6 ppm for Hg(1) nucleus with 3J(Hg-H) = 177 Hz and an effective coordination number of four. This fact explained that the 199Hg signal of the Hg(2) nucleus with an effective coordination number of five lies at a downfield of 30 ppm from that of the Hg(1) nucleus with a smaller effective coordination number of four. The 199Hg in CDCl3 solution clearly reveals that there are two different Hg nuclei, i.e. Hg(1) and Hg(2), in 3 and this NMR data provides an evidence that 3 remains as a bismercury species in CDCl3 solution. The proton and 199Hg spectra clearly show 3J(Hg-H) coupling and this coupling indicates a slow ligand exchange for 3 in CDCl3.

Chapter 4
The reaction of PhHgOAc with 2-NCH3NCTPPH (2) gave a mercury (II) complex of (phenylato)(4-aza-4-methyl-5, 10, 15, 20-tetraphenyl-2-carbaporphyrinato-N,N',N” )-mercury(II), [HgPh(4-NCH3NCTPP); 6]. The crystal structure of 6 was determined and the coordination sphere around Hg(1) in 6 was a four-coordinate derivative with a seesaw geometry. Dipole-dipole (DD) interaction governs the longitudinal relaxation rate for Hg(1)-Ph-H2,6 of 6 in CDCl3 (0.01 M) at 599.95 MHz.
URI: http://hdl.handle.net/11455/16643
其他識別: U0005-3107200716082200
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.