Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16655
標題: 以固體載體為觸媒在質子交換膜燃料電池之設計與應用
Fabrication and Application of Solid Supported Catalysts for Proton Exchange Membrane Fuel Cell
作者: 柯志杭
Ke, Jyh-Harng
關鍵字: solid support catalyst;固體載體觸媒;proton exchange membrane;fuel cell;preanodized carbon;carbon nanotube;質子傳導膜;燃料電池;預氧化碳;奈米碳管
出版社: 化學系所
引用: 1.Chen, J.C., Shih, J.L., Liu, C.H., Kuo, M.Y., Zen, J.M., Anal. Chem., 2006, 78, 3752-3757 2.洪啟倫,國立中興大學化學系碩士論文,2006。 3.黃鎮江,燃料電池,全華科技圖書股份有限公司,2005。 4.G. Li, Peter G. Pickup., Journal of Power Sources 2006, 161, 256-263. 5.G. Andreadis, P. Tsiakaras., Chemical Engineering Science 2006, 61, 7497-7508. 6.S. Song, P. Tsiakaras., Applied Catalysis B: Environmental 2006, 63, 187-193. 7.L. Zhang, Y. Tang , J. Baoa, T. Lua, C. Li., Journal of Power Sources 2006, 162, 177-179. 8.S. Ha., Z. Dunbar, R.I. Masel., Journal of Power Sources 2006, 158, 129-136. 9.J.H. Wee., Journal of Power Sources 2006, 161, 1-10. 10.http://en.wikipedia.org/wiki/Fuel_cell 11.H. F. Oetjen, V. M. Schmidt, and U. Stimming, J. Electrochem. Soc., 1996. 143, 3838. 12.T. Schultz, S. Zhou, K. Sundmacher., Chem. Eng. Technol., 2001, 12, 1223-1233 13.http://xtronics.com/reference/energy_density.htm 14.Berezin I. V., Varfolomeev, S. D., Appl Biochem. Bioeng., 1978, 2, 259-290. 15.Tarasevich M. R., Yaropolov, A. I., Bioelectrochem. Bioenergetics, 1979, 6, 393-403. 16.Wang, L.; Yuan, Z. Sensors, 2003, 3, 544-554. 17.Varfolomeev, S. D.; Kurochkin, I. N., Biosen. Bioelectron., 1994, 9, 353-357. 18.Luo, X. L.; Killard, A. J.; Smyth, M. R., Electroanal., 2006, 11, 1131-1134 19.鍾協訓,國立中興大學化學系博士論文,91。 20.J. Wang, B. Tina, V. Nascimento and L. Angnes, Electrochim. Acta, 1998, 43, 3459. 21.Church Steven., Del. firm installs fuel cell, The News Journal, 2006, January 6, p. B7. 22.Heitner-Wirguin, C. Journal of Membrane Science, 1996, 120, 1–33. 23.Mauritz K. A., Moore, R. B. Chemical Reviews, 2004, 104, 4535–4585. 24.Gelbard Georges., Industrial & Engineering Chemistry Research., 2005, 44, 8468–8498. 25.Venkatesh S., Tilak, B. V. J. Chem. Edu., 1983, 60, 276 26.Trasatti S. In Electrochemistry of Novel Materials, Lipkowski, J., Ross, P. N., Eds. VCH, 1995. 27.Horacek S., Puschaver, S., S. Chem. Eng. Progr., 1971, 67,71. 28.Trasatti S., Lodi, G., Electrodes of Conductive Metal Oxides., Elsevier, New Yourk, 1981. 29.Zen, J.-M., Manoharan, R., Goodenough, J. B., J. Appl. Electrochem., 1992, 22,140. 30.Zen, J.-M., Wang, C.-B., J. Electroanal. Chem., 1994, 368, 251. 31.Zen, J.-M., Chen, I,-L. Electroanalysis, 1997, 9, p. 505. 32.Zen, J.-M., Ting, Y.-S., Anal. Chim. Acta., 1997, 342,175. 33.Zen, J.-M., Lai, Y.-Y., Ilangovan, G., Senthil Kumar, A., Electroanalysis, 1999, 12, 280. 34.Zen, J.-M., Tang, J.-S., Anal. Chem., 1995, 67,208. 35.Zen, J.-M., Chang, M.-R., Ilangovan, G., Analyst, 1999, 124,679. 36.Zen, J.-M., Liou, S.-L., A.S. Kumar, Hsia, M.-S., Angew. Chem. Int. Ed., 2003, 42, 577 and 1328. 37.M. Hudlick´y, Oxidations in Organic Chemistry., ACS Monograph 186, American Chemical Society, Washington, DC, 1990. 38.Y.S. Rao, R. Filler, J. Org. Chem., 1974, 39, 3304. 39.D. Dey, M.K. Mahanti, J. Org. Chem., 1990, 55, 5848. 40.J. Muzart, A.N. Ajjou, S. Ait-Mohand, Tetrahedron Lett., 1994, 35, 1989. 41.G. Barak, J. Dakka, Y. Sasson, J. Org. Chem., 1988, 53, 3553. 42.D.L. Wu, A.P. Wight, M.E. Davis, Chem. Commun., 2003, 758. 43.B.-Z. Zhan, M.A. White, T.-K. Sham, J.A. Pinock, R.J. Doucet, K.V.R. Rao, K.N. Robertson, T.S. Cameron, J. Am. Chem. Soc., 2003, 125, 2195. 44.K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc., 2000, 122, 7144. 45.C.-M. Che, K.-W. Cheng, M.C.W. Chan, T.-C. Lau, C.-K. Mak, J. Org. Chem., 2000, 65, 7996. 46.W.-H. Cheng, W.-Y. Yu, W.-P. Yip, N.-Y. Zhu, C.-M. Che, J. Org. Chem., 2002, 67, 7716. 47.K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed., 2002, 41, 5438. 48.Zen, J.-M. A.S. Kumar, Acc. Chem. Res., 2001, 34, 772. 49.H.S. Horowitz, J.M. Longo, H.H. Horowitz, J.T. Lewandowski, in: R.K. Graselli, J.F. Brazdil (Eds.). Solid State Chemistry in Catalysis, ACS Symposium Series 279, ACS, Washington, DC, 1985, 143. 50.B.D. Cullity, Elements of X-ray Diffraction, second ed., 1978. 51.B.E. Warren, Diffraction by Imperfect Crystals, Dover Publication, New York, 1969, 251. 52.C. Heitner-Wirguin, J. Membr. Sci., 1996, 120, 1. 53.T.D. Gierke, W.Y. Hsu, Macromolecules, 1982, 15, 101. 54.Y. Wang, Y. Kawano, S.R. Aubuchon, R. Palmer, Macromolecules, 2003, 36, 1138. 55.P. Liu, J. Bandara, Y. Lin, D. Elgin, L.F. Allard, Y.-P. Sun, Langmuir, 2002, 18, 10398. 56.M. Ludvigsson, J. Lindgren, J. Tegenfeld, J. Mater. Chem., 2001, 11, 1269. 57.F. Frusteri, F. Arena, S. Bellitto, A. Parmaliana, Appl. Catal. A, 1999, 180, 180. 58.Z.Q. Ma, P. Cheng, T.S. Zhao, J. Membr. Sci., 2003, 215, 327. 59.徐振騰,國立中興大學博士論文,95。 60.Chen,Y.; Tang, Y.; Liu, C.; Xing, W.; Lu, T. J. Power Sources, 2006, 161, 470-473. 61.Chu,Y. H.; Shul, Y. G.; Choi, W. C.; Woo, S. I.; H. S. Han. J.Power Sources, 2003, 118, 334-341. 62.Lee, J. B. Park, Y. K.; Yang, O. B., Kang, Y., Jun, K. W.; Lee, Y. J., Kim, H. Y.; Lee, K. H., Choi, W. C. J. Power Sources, 2006, 158, 1251-1255. 63.C.Y. Chen, C.S. Tsao., International Journal of Hydrogen Energy, 2006, 31, 391- 398 64.J. Ge, H. Liu., Journal of Power Sources, 2005, 142, 56-69 65.Akazawa. T., Inaguma. Y., Katsumata. T., Hiraki. K., Takahashi. T., , J. Cryst. Growth, 2004, 271, 445-449. 66.Ke, J.-H., A. S. Kumar, Sue, J.-W., S. Venkatesan, Zen, J.-M., Journal of Molecular Catalysis A: Chemical, 2005, 233, 111-120 67.Tian A. H., Kim J. Y., Shi J. Y., Kim K., Lee, K., J. Power Sources, 2007, 167, 302-308. 68.S. Srinivasan, O.A. Velev, A. Parthasarathy, D.J. Manko, A.J. Appleby, J.Power Sources,1991, 36, 299. 69.S. Litster, G. McLean, J. Power Sources, 2004, 130, 61. 70.Joseph Wang., Mustafa Musameh, and Yuehe Lin., J. AM. CHEM. SOC., 2003, 125, 2408-2409 71.Y. Zhang, C. Erkey, Ind. Eng. Chem. Res., 2005, 44, 5312. 72.D.R. Rolison, K.E. Swider, Langmuir, 1999, 15, 3302. 73.H.Y. Li, H.Z. Chen, J.Z. Sun, J. Cao, Z.L. Yang, M. Wang, Macromol. Rapid Commun., 2003, 24, 15. 74.F. Tiarks, K. Landfester,M. Antonietti, Macromol. Chem. Phys., 2001, 202, 51. 75.J.-C. Chen, H.-H. Chung, C.-T. Hsu, D.-M. Tsai, A.S. Kumar, J.-M. Zen, Sensors and Actuators B, 2005, 110, 364–369 76.連家雯。國立中興大學碩士論文。94。 77.Wang, J., Electroanalysis, 2004, 17, 7-14. 78.Chou, A., Boking, T., Singh, N. K. and Gooding, J. J., Chem. Commun., 2005, 842-844. 79.Deo, R. P., Lawrence, N. S. and Wang, J., Analyst., 2004, 129:1076-1081. 80.Wang, J. and Musameh, M., Anal. Chim. Acta., 2005, 539, 209-213. 81.Chicharro, M., Sanchez, A., Bermejo, E., Zapardiel, A., Rubianes, M. D. and Rivas, G. A., Anal. Chim. Acta., 2005, 543: 84-91. 82.Masse, M. O., Duvallet, V., Borremans, M. and Goeyens, L., Int. J. Cosmetic Sci., 2001, 23, 219-232. 83.Shih, Y., J. AOAC Int., 2001, 84: 1045-1049. 84.Shih, Y. and Zen, J. M., Electroanalysis., 1999, 11, 229-233. 85.Belin, T.; Epron, F. Mater. Sci. Eng. B., 2005, 119, 105 86.Compagnini, G., Puglisi, O., Foti, G. Carbon., 1997, 35, 1793. 87.Craig E. B., Compton, R. G., Analyst., 2005, 130.1232. 88.Ryan, R. M., Craig E. B., Compton, R. G., Analyst., 2004, 129,755. 89.Eleanor, R. L., Craig E. B., Compton, R. G., Electroanalysis 2005, 17, 1627. 90.Willner, I., Katz, E., Patolsky, F., Buckmann, A. F. J. Chem. Soc., 1998, 8, 1817–1822. 91.Katz, E., Willner, I., Kotlyar, A. B., J. Electroanal. Chem., 1999, 1, 64–68. 92.Pizzariello, A., Stred’ansky, M., Miertus, S., Bioelectrochem., 2002, 56, 99–105. 93.Cai, C. X., Chen J., Anal. Biochem., 2004, 332, 75–83. 94.Liu, A. H., Wei, M. D., Honma, I., Zhou, H. S., Anal. Chem., 2005 77 8068-8074. 95.Dong, S. J., Li J. H., Bioelectrochem. Bioenergetics, 1997, 42, 7-13. 96.Lei, C. H., Wollenberger, U., Bistolas N., Anal. Bioanal. Chem., 2002, 372, 235–239. 97.Wang, J. X., Li, M. X., Shi, Z. J., Li, N. Q., Gu, Z. N., Anal. Chem., 2002, 74, 1993-1997. 98.Cai, C. X., Chen J., Anal. Biochem., 2004, 325, 285–292. 99.Wu, J.; Qu, Y. Anal. Bioanal. Chem. 2006, 385, 1330-1335. 100.Savitri, D., Mitra, C. K., Bioelectrochem. Bioenergetic, 1998, 47, 67-73. 101.Luo, X. L.; Killard, A. J.; Smyth, M. R. Electroanal. 2006, 11, 1131-1134 102.Guiseppi, E. A., Lei, C. H., Baughman, R. H., Nanotechnology, 2002, 13, 559–564. 103.Liu, Y., Wang, M. K., Zhao, F., Xu, Z., Dong S. J., Biosen. Bioelectron., 2005, 21, 984–988. 104.Stetten, F. Von, Kerzenmacher, S., Lorenz, A., Chokkalingam, V., Miyakawa, N., Zengerle, R., Ducrée, J. MEMS 2006,Istanbul, Turkey, 2006 January, 22-26. 105.Allen, R.M., Bennetto, H.P., Appl. Biochem. Biotechnol., 1993, 39, 27–40. 106.Park, D.H., Zeikus, J.G., Appl. Environ. Microbiol., 2000, 4, 1292–1297. 107.Schroder, U., Niessen, J., Scholz, F., Angew. Chem. Int. Ed., 2003, 25, 2880–2883. 108.Willner, I.; Katz, E.; Patolsky, F.; Buckmann, A. F. J. Chem. Soc. 1998b, 8, 1817–1822. 109.Katz, E.; Willner, I.; Kotlyar, A. B. J. Electroanal. Chem. 1999c, 1, 64–68. 110.Pizzariello, A.; Stred’ansky, M.; Miertus, S. Bioelectrochem. 2002, 56, 99–105. 111.Wu, J.; Qu, Y. Anal. Bioanal. Chem. 2006, 385, 1330-1335. 112.Tsujimura, S., Kano, K., Ikeda, T., Electrochem., 2002, 12, 940–942. 113.Katz, E., Willner, I., J. Am. Chem. Soc., 2003, 22, 6803–6813.
摘要: 
近年來以固體為載體之擔載型觸媒的研究備受矚目,隨著科技的日新月異,奈米尺寸的觸媒被大量的研究與開發,而奈米粒子因容易受外力影響而聚集,所以固體載體成為觸媒研究中重要的一環。本論文之研究有三個部分。
在第一個部分中我們以一簡單溫和的氧化法氧化被Nafion之磺酸根吸附的釕鉛陽離子,利用Nafion的特性製備成為一個堅固且耐用的薄膜催化劑,藉由XRD、SEM、SECM、AFM和TGA更加證實此催化劑之特殊性,而此催化劑在輔助氧化劑的存在下,精準的控制釕氧化物的價態,苯甲醛的選擇性高達99%以上。在質子交換膜燃料電池中,直接甲醇燃料電池具有低溫啟動、燃料容易攜帶、燃料能量密度高等優勢,非常適合做為載具及3C產品之電力來源,但甲醇與水可以無限比例互溶,甲醇易隨著水由陽極穿透質子交換膜而毒化陰極觸媒,藉由薄膜催化劑之質子交換膜可以有效的控制甲醇穿透並提高燃料之濃度,燃料濃度的提高不僅使得電池之穩定性提高同時也增加電池之使用效率。
第二部分中我們發現在燃料電池之觸媒製備常利用碳黑作為載體,碳黑在水中分散程度不一,而有機分散劑之電阻質較高常導致觸媒用量提高增加成本,在本論文中我們利用幾何片狀結構的黏粒礦物與Nafion溶液做為分散劑巧妙的將碳黑分散,在不同黏土礦物與碳黑之不同比例(clay/CB 0/100, 15/85, 33/67)下進行分散,在SEM及TEM鑑定下證明其分散程度而碳黑粒徑約40-60 nm。為由黏粒礦物表面帶的負電,使PtCl62-可以完全吸附在碳黑上成為高效率的觸媒,而黏粒礦物的親水性可以幫助觸媒親水增加觸媒之反應效率,提高電池效能。
最後,在研究中我們發現預氧化碳網版印刷電極,可以增加其表面官能基且使得碳表面之稜邊結構增加,使得其電化學型為類似奈米碳管,藉由簡單的氧化即可製備出以高製作成本的奈米碳管有相同的行為,不僅容易控制電極之穩定與品質,且在酵素修飾後具有直接電子傳遞之功能,將此發現應用於葡萄糖空氣燃料電池中製備成為生物燃料電池,生物相容性高且開路電壓約0.6 V電池最大功率達到150 μW有相當不錯的電池性表現。

Fabrications and applications of stable and efficient solid supported catalysts are challenging interest in fuel cells. This thesis deals with studies that shed light on development of three distinct solid supported catalysts and its application in proton exchange membrane fuel cell. While the first part of the study is concerned with the preparation, Characterizations and applications of Lead ruthenate pyrochlore (Pyc, Pb2Ru2O7-x) modified Nafion® membrane catalyst to control the methanol crossover in direct methanol fuel cell (DMFC), the second part aims at stabilization of carbon black and platinum nano particle by using clay as a dispersing agent in 5 wt% Nafion co-solvent suspension and its application in polymer electrolyte membrane fuel cell (PEMFC) and the last part deals with the simple fabrication of Nafion® polymer compressed preanodized carbon catalyst for sugar air battery.
Nafion® ionomer membrane belongs to unique class of the most potent polymer that is often used for acid-catalyzed organic reactions as well as solid-state protonic conductor in fuel cell. Further modification of the membrane units by utilizing its ion-exchanging property is an elegant way to prepare integrated heterogeneous systems. The present study describes the simple in-situ precipitation of Pyc units (Pb2Ru2O7-x) inside the Nafion® 417 membrane at low temperature. The preparation procedure resulted in a uniform distribution of the catalytically active micro-particles throughout the Nafion® membrane matrix and characterized by physico-chemical techniques such as XRD, SEM, SECM, AFM, and TGA. The catalytic performance and stability of NPyc was tested for selective oxidation of benzyl alcohol to bezaldehyde with co-oxidant in a triphasic conditions. The results provide a first clear-cut idea to control the methanol cross over in DMFC. The cationic exchange ability of Nafion® 117 membrane was studied by controlled ion-exchange method between 5 to 120 minutes at room temperature. The current density is higher at 10 minutes in 2 M methanol. This noval low temperature grading fabrication technique improves the proton transfer by reducing the active pyrochlore site in the membrane.
In the second part, we developed a new approach for the preparation of highly dispersed carbon black platinum nanoparticle with different geometric shapes by introducing clay (0 to 33%) as a dispersing agent in 5% Nafion co-solvent suspension without any organic solvents. FE-SEM analysis of CB/clay (100/0, 85/15, 67/33) was achieved CB particles with an average diameter of 40-60 nm. The hydrophilic property of the hybrid material was effectively improved in the presence of the clay was observed in sessile-drop test. Furthermore, fine dispersion of Pt nanoparticle was prepared and TEM images also reveals a homogeneous Pt particle distribution ( average particle diameter of 5 nm) on the catalytic support and it enhance the fuel cell performance by increasing the current density.
Finally, a simple attempt is employed to demonstrate a fabrication of preanodized carbon fiber catalyst with Nafion membrane. Initial electrochemical investigation on CNT modified SPE and preanodized SPE, reveals that the SPE* shows more advantages over than CNT-SPE. The generation of more edge plane sites during the preanodization procedure was characterized by a Raman spectra and it plays a main role in electrochemical oxidation of glucose in the presence of glucose oxidase. Interestingly, the preanodized carbon fiber shows the same electrochemical behaviour of SPE*. Furthermore, it can be applied to construct a fabrication of simple sugar-air battery. Its shows high power density ~150 μw/cm2 and open circuit potential ~0.6V.
URI: http://hdl.handle.net/11455/16655
其他識別: U0005-0808200819522300
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.