Please use this identifier to cite or link to this item:
標題: 新抑癌素蛋白的苯丙胺酸78殘基突變影響生色團釋放的再探討
Further Study of the effect of Phe78 Mutation on Chromophore Release From Neocarzinostatin Chromoprotein Complex
作者: 盧志明
Lu, Zhi-Ming
關鍵字: neocarzinostatin;新抑癌素;aponeocarzinostatin;Apo-NCS;NCS;mutation;殘基突變;新抑癌素蛋白
出版社: 化學系所
引用: 1. Ishida, N., Miyazaki, K., Rikimaru, M., “Neocarzinostatin, an antibiotic of high molecular weight.” J. Antibiotics. 1965, 18, 8-76 2. Koide, Y., Ishii, F., Hasuda, K., Koyama, Y., Edo, Katamine, S., Kitame, F., & Ishida, N. “Isolation of a non-protein component from neocarzinostatin (NCS) and their biological activities.” J. Antibiotics. 1980, 33 (3), 342-346. 3. Napier, M. A., Holmquist, B., Strydom, D. J., & Goldberg, I. H. “Neocarzinostatin chromophore: purification of the major active form and characterization of its spectral and biological properties.” Biochemistry. 1981, 20, 5602-5608. 4. Edo, K., Mizugaki, M., Koide, Y., Seto, H., Furihata, K., Oake, N. & Ishida, N. “The struture of neocarzinostatin chromophore possessing a novel bicyclo-[7,3,0]dodecadiyne system.” Tetrahedron Letters. 1985, 26, 331-334. 5. Kappen, L. S., Napier, M. A., Goldberg, I. H., “Roles of chromophore and apo-protein in neocarzinostatin action.” Proc. Natl. Acad. Sci. 1980, 77, 1970-1974. 6. Golik, J., Dubay, G.., Groenewold, G.., Kawaguchi, H., Konishi, M., et al. “Esperamicins; a Novel Class of Potent Antitumor Antibiotics .3. Structures of Esperamicins-A1 ; Esperamicin-A2 ; and Esperamicin-A1b.” Journal of the American Chemical Society. 1987, 109, 3462-3464. 7. Lee, M. D., Dunne, T. S., Chang, C. C., Ellestad, G. A., Siegel, M. M., et al. “Calichemicins; a Novel Family of Antitumor Antibiotics .2. Chemistry and Structure of Calichemicin-Gamma-1.” Journal of the American Chemical Society. 1987, 109, 3466-3468. 8. Konishi, M., Ohkuma, H., Matsumoto, K., Tsuno, T., Kamei, H., et al. “Dynemicin; a Novel Antibiotic with the Anthraquinone and 1 ;5-Diyn-3-Ene Subunit.” Journal of Antibiotics. 1989, 42, 1449-1452. 9. Leet, J. E., Schroeder, D. R., Hofstead, S. J., Golik, J., Colson, K. L., et al. “Kedarcidin; a New Chromoprotein Antitumor Antibiotic : Structure Elucidation of Kedarcidin Chromophore.” Journal of the American Chemical Society. 1992, 114, 7946-7948. 10. Yoshida, K., Minami, Y., Azuma, R., Saeki, M., Otani, T., “Structure and Cycloaromatization of a Novel Enediyne; C-1027 Chromophore.” Tetrahedron Letters. 1993, 34, 2637-2640. 11. Schroeder, D. R., Colson, K. L., Klohr, S. E., Zein, N., Langley, D. R., et al. “Isolation; Structure Determination; and Proposed Mechanism of Action for Artifacts of Maduropeptin Chromophore.” Journal of the American Chemical Society. 1994, 116, 9351-9352. 12. McDonald, L. A., Capson, T. L., Krishnamurthy, G., Ding, W. D., Ellestad, G. A., et al. “Namenamicin; a new enediyne antitumor antibiotic from the marine ascidian Polysyncraton lithostrotum.” Journal of the American Chemical Society. 1996, 118, 10898-10899. 13. Ando, T., Ishii, M., Kajiura, T., Kameyama, T., Miwa, K., et al. “A new non-protein enediyne antibiotic N1999A2: Unique enediyne chromophore similar to neocarzinostatin and DNA cleavage feature.” Tetrahedron Letters. 1998, 39, 6495-6498. 14. Oku, N., Matsunaga, S., Fusetani, N., Shishijimicins A.-C, “novel enediyne antitumor antibiotics from the ascidian Didemnum proliferum.” Journal of the American Chemical Society. 2003, 125, 2044-2045. 15. Davies J, Wang H, Taylor T, Warabi K, Huang XH, Andersen RJ., et al. “ Uncialamycin, a new enediyne antibiotic.” Org Lett. 2005 Nov 10; 7(23), 5233-6. 16. Takahashi, M., Toriyama, K, Maeda, H., Kikuchi, M., Kumagai, K.,”Clinical trials of a new antitumor polypeptide: neocarzinostatin (NCS).” Tohoku J. Exp. Med. 1969, 98(3), 273-280. 17. Kitajima, K., “The clinical evaluation of a new antileukemic agent. 2 Neocarzinostatin (author's transl)” Recent Results Cancer Res. 1978, 63, 252-260. 18. Maeda, H., ”Neocarzinostatin in cancer chemotherapy” (review). Anticancer Res. 1981, 1, 175-186 19. Maeda, H., “SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy" (review). Advanced Drug Delivery Reviews 2001, 46, 169-185 20. Maeda, H., Edo. N, Ishida, N., ”Neocarzinostatin. The past, present, and future of an anticancer drug.” 1997, pp. 1-22, Spring-Verlag, Tokyo. 21. Napier, M. A., Holmquist, B., Strydom, D. J., Goldberg, I. H., “Neocarzinostatin: spectral characterization and separation of a non-protein chromophore.” Biochem. Biophys. Res. Commun. 1979, 89(2), 635-642. 22. Kappen, L. S. & Goldberg, I. H., “Stabilization of neocarzinostatin nonprotein chromophore activity by interaction with apoprotein and with HeLa cells.” Biochemistry. 1980, 19, 4786-4790. 23. Povirk, L. F. & Goldberg, I. H., “Binding of the nonprotein chromophore of neocarzinostatin to deoxyribonucleic acid.” Biochemistry. 1980, 19, 4773-4080. 24. Koide, Y., Ito, A., Ishii, F., Koyama, Y., Edo, K., Ishida, N., “Reconstitution of neocarzinostatin (NCS).” J. Antibiotics. 1982, 35, 766-769. 25. Povirk, L.F., Dattagupta, N., Warf, B.C., Goldberg, I. H., “Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation.” Biochemistry, 1981, 14, 4007-4014. 26. Hensens, O. D., Dewey R. S., Liesch, J. M., Napier, M. A., Reamer R. A., Smith J. L., Schönberg, G. A., Goldberg I. H., “Neocarzinostatin chromophore: presence of a highly strained ether ring and its reaction with mercaptan and sodium borohydride.” Biochem. Biophys. Res. Commun. 1983, 113, 538-547 27. Napier, M. A., Holmquist, B., Strydom, D. J., & Goldberg, I. H. “Neocarzinostatin chromophore: purification of the major active form and characterization of its spectral and biological properties.” Biochemistry. 1981, 20, 5602-5608. 28. Albers-Schonberg, G., Dewey, R. S., Hensens O. D., Liesch, J. M., Napier, M. A., Goldberg, I. H., “Neocarzinostatin: chemical characterization and partial structure of the non-protein chromophore.” Biochem. Biophys. Res. Coummun. 1980, 95, 1351-1356. 29. Schönberg, G. A., Dewey, R. S., Hensens, O.D., Liesch, J. M., Napier, M. A., Goldberg I. H., ”Neocarzinostatin: chemical characterization and partial structure of the non-protein chromophore.” Biochem. Biophys. Res. Commun. 1980, 95, 1351-1356 30. Schreiber, S. L., Kiessling, L. L., “Synthesis of the bicyclic core of the esperamicin/calichemicin class of antitumor agents.” Journal of the American Chemical Society. 1988, 110, 631-633. 31. Edo, K., Mizugaki, M., Koide, Y., Seto, H., Furihata, K., Oake, N. & Ishida, N. “The struture of neocarzinostatin chromophore possessing a novel bicyclo-[7,3,0]dodecadiyne system.” Tetrahedron Letters. 1985, 26, 331-334 32. Takashima, H., Amiya, S., and Kobayashi, Y., “Neocarzinostatin: interaction between the antitumor-active chromophore and the carrier protein” J. Biochem. 1991, 109(6), 807-810. 33. Kim, K. H., Kwon, B. M., Myers, A. G., and Rees, D. C., “Crystal structure of neocarzinostatin, an antitumor protein-chromophore comples.” Science 1993, 262, 1024-1046. 34. Tanaka, T., Hirama, M., Fujita, K.-I., Imajo, S., and Ishiguro, M., “Solution structure of the antitumor antibiotic neocarzinostatin, a chromophore-protein complex” (1993) J. Chem. Soc., Chem. Commun., 1993, 15: 1205-1207. 35. Goldberg, I. H., “Mechanism of neocarzinostatin action: Role of DNA microstructure in determination of chemistry of bistranded oxidative damage.” Acc. Chem. Res. 1991, 2, 191-198. 36. Andrew G. Myers, Michael E. Kort, and Marlys Hammond, “A Comparison of DNA Cleavage by Neocarzinostatin Chromophore and Its Aglycon: Evaluating the Role of the Carbohydrate Residue” J. Am. Chem. Soc. 1997, 119(13), 2965-2972 37. Myers, A. G., “Proposed structure of the neocarzinostatin chromophore-methyl thioglycolate adduct; a mechanism for the nucleophilic activation of neocarzinostatin.” Tetrahedron Letters. 1987, 28 (39), 4493-4496. 38. Lee, S. H., Goldberg, I. H., “Role of Epoxide in Neocarzinostatin Chromophore Stability and Action”, Mol Pharmacol, 1988, 33, 396-401. 39. Jones, R. R., Bergman, R. G., “p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure” Journal of the American Chemical Society., 1972, 94, 660-661. 40. Myers, A. G., Cohen, S. B., Kwon, B. M., “DNA cleavage by neocarzinostatin chromophore. Establishing the intermediacy of chromophore-derived cumulene and biradical species and their role in sequence-specific cleavage.” J. Am. Chem. Soc. 1994, 116, 1670-1682. 41. Kappen, L. S., Goldberg, I. H., Liesch, J. M.,” Identification of thymidine-5'-aldehyde at DNA strand breaks induced by neocarzinostatin chromophore” Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 744-748. 42. Kappen, L. S., Goldberg, I. H., “Deoxyribonucleic Acid Damage by Neocarzinostatin Chromophore: Strand Breaks Generated by Selective Oxidation of C-5' of Deoxyriboset” Biochemistry 1983, 22, 4872-4878. 43. Saito, I., Kawabata, H., Fugiwara, T., Sugiyama, H., Matsura, T. J., “A novel ribose C-4'' hydroxylation pathway in neocarzinostatin-mediated degradation of oligonucleotides” J. Am. Chem. Soc. 1989, 111, 8302-8303. 44. Kappen, L. S., Goldberg, I. H., Frank, B. L., Worth, L., Jr., Christner, D. F., Kozarich, J. W., Stubbe, J., “Neocarzinostatin-Induced Hydrogen Atom Abstraction from C-4' and C-5' of the T Residue at a d(GT) Step in Oligonucleotides: Shuttling between Deoxyribose Attack Sites Based on Isotope Selection Effects” Biochemistry 1991 30, 2034-2042. 45. Kappen, L. S., Goldberg, I. H., “Identification of 2-Deoxyribonolactone at the Site of Neocarzinostatin-Induced Cytosine Release in the Sequence d( AGC)” Biochemistry 1989 28, 1027-1032. 46. Kappen, L. S., Goldberg, I. H., Wu, S. H., Stubbe, J., Worth, L., and Kozarich, J. W., “Isotope Effects on the Sequence-Specific Cleavage of dC in d( AGC) Sequences by Neocarzinostatin: Elucidation of Chemistry of Minor Lesions” J. Am. Chem. Soc. 1990 112, 2797-2798. 47. Dedon, P. C., Jiang, Z.-W., Goldberg, I. H., “Neocarzinostatin-Mediated DNA Damage in a Model AGT˙ACT Site: Mechanistic Studies of Thiol-Sensitive Partitioning of C4' DNA Damage Products” Biochemistry 1992 31, 1917-1927. 48. Kikuchi, M., Shoji, M., Ishida, N., “Pre-neocarzinostatin, a specific antagonist of neocarzinostatin.” J. Antibiot. 1974, 27(10), 766-74 49. Maeda, H., Kuromizu, K., “Spontaneous deamidation of a protein antibiotic, neocarzinostatin, at weakly acidic pH. Conversion to a homologous inactive preneocarzinostatin due to change of asparagine 83 to aspartic acid 83 accompanied by conformational and biological alterations.” J. Biochem. 1977, 81(1), 25-35 50. Meienhofer, J., Maeda, H., Glaser, C. B., Czombos, J., & Kuromizu, K. “Primary structure of neocarzinostatin, an antitumor protein.” Science. 1972, 178, 875-876. 51. Maeda, H., Glaser, C. B., Czombos, J., & Meienhofer, J. “Structure of the antitumor protein neocarzinostatin.” Arch. Biochem. Biophys. 1974, 164, 369-378. 52. Gibson, B. W., Herlihy, W. C., Samy, T. S. A., Hahm, K. S., Maeda, H., Meienhofer, J., & Biemann, K. A. “A revised primary structure for neocarzinostatin based on fast atom bombardment and gas chromatographic-mass spectrometry.” J. Biol. Chem. 1984, 259, 10801-10806. 53. Kuromizo, K., Tsunasawa, S., Maeda, H., Abe, O., & Sakiyama, F. “Reexamination of the primary structure of an antitumor protein, neocarzinostatin.” Arch. Biochem. Biophys. 1986, 246, 199-205. 54. Remerowski, M. L., Glaser, S. J., Sieker, L .C., Samy, T. S., Drobny, G. P., “Sequential 1H NMR assignments and secondary structure of aponeocarzinostatin in solution.” Biochemistry 1990 29(36),8401-8409 55. Adjadj, E., Mispelter, J., Quiniou, E., Dimicoli, J. L., Favaudon, V., Lhoste, J. M., “Proton NMR studies of apo-neocarzinostatin from Streptomyces carzinostaticus. Sequence-specific assignment and secondary structure.” Eur. J. of Biochem. 1990, 190(2), 263-271 56. Mispelter, J., Lefèvre, C., Adjadj, E., Quiniou, E, Favaudon, V., “Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.” J. Biomol. NMR. 1995, 5(3), 233-224 57. Sugiyama, H., Yamashita, K., Nishi, M., Saito, I., “A novel cyclization pathway of neocarzinostatin chromophore by thiol under physiological conditions.” Tetrahedron Letters. 1992, 33, 515-518. 58. Myers, A. G., Stephen, P. A., and Robert, W. L., “A new and unusual pathway for the reaction of neocarzinostatin chromophore with thiols. Revised structure of the protein-directed thiol adduct.” J. Am. Chem. Soc. 1996, 118, 4725-4726. 59. Chin, D. H. “Rejection by protein through charges rather than sizes.” Chem. Eur. J. 1999, 5 (3), 1084-1090. 60. Christopher, G., Sudhahar, P., Balamurugan, K., Chin, D. H.,” Release of the Neocarzinostatin Chromophore from the Holoprotein Does Not Require Major Conformational Change of the Tertiary and Secondary Structures Induced by Trifluoroethanol” J. Biol. Chem., 2000, 275(51), 39900-39906 61. Hariharan, P., Liang, W., Chou, S. H., Chin, D. H.,” A new model for ligand release: Role of side chain in gating the enediyne antibiotic.” J. Biol. Chem., 2006 281(23), 16025-16033 62. Biochemical Magnetic Resonase Data Bank (BioMagResBank) accession number: 5343 63. Urbaniak, M. D., Muskett, F. W., Finucane, M. D., Caddick, S., and Woolfson, D. N., “Solution Structure of a Novel Chromoprotein Derived from Apo-Neocarzinostatin and a Synthetic Chromophore” Biochemistry 2002, 41, 11731-11739 64. Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., and Fournier, D., “Mutation of exposed hydrophobic amino acids to arginine to increase protein stability.” BMC Biochem. 2004, 5, 9 65. Burley, S. K., Petsko, G. A., “Aromatic-Aromatic Interaction: A Mechanism of Protein Structure Stabilization” Science 1985, 229, 23 66. Hunter, C. A., Sanders J. K. M., “The Nature π-π Interactions” J. Am. Chem. Soc., 1990, 112(14), 5525 - 5534 67. Levitt, M., Perutz, M. F., “Aromatic Rings Act as Hydrogen Bond Acceptors” J. Mol. Biol., 1988, 201, 751-754 68. Urbaniak, M. D., Bingham, J. P., Hartley, J. A., Woolfson, D. N., Caddick, S.,” Design and Synthesis of a Nitrogen Mustard Derivative Stabilized by Apo-neocarzinostatin” J. Med. Chem. 2004, 47, 4710-4715 69. Tomioka, Y., Kisara, S., Yoshizawa, S., Ozawa, M., Suzuki, N., Yamaguchi, H., Hishinuma, T., Mizugaki, M., Goto, J., “Preparation of Neocarzinostatin Apoprotein Mutants and the Randomized Library on the Chromophore-Binding Cavity” Biol. Pharm. Bull., 2006, 29(5), 1010- 1014. 70. Kiss, C., Fisher, H., Pesavento, E., Dai, M., Valero, R., Ovecka, M., Nolan, R., Phipps, M. L., Velappan, N., Chasteen, L., Martinez, J. S., Waldo, G. S., Pavlik, P., Bradbury, A. R. M., “Antibody binding loop insertions as diversity elements” Nucleic Acids Res., 2006, 34(19), e132
新抑癌素(Neocarzinostatin)是1960年代於日本發現的一種抗腫瘤抗生素藥物。新抑癌素主要能分成兩個部份;一是具有高度細胞毒性、不穩定的小分子藥物新抑癌素生色團。二是負責保護生色團,具有高度穩定性、大分子量的蛋白質載體新抑癌素蛋白。在溶液中,新抑癌素蛋白以非共價鍵的形式與生色團緊密結合(Kd=0.1 nM),能夠保護生色團不被環境所分解。但當進行細胞毒殺的時候,新抑癌素蛋白必須釋放生色團,讓生色團抵達並嵌入細胞DNA鏈的小凹槽(minor groove),被硫醇激活後奪取DNA磷糖骨架的氫,造成細胞DNA鏈斷裂,藉此抑制細胞的生長甚至殺死細胞。令科學家感到好奇的是,新抑癌素究竟是利用哪種機制,調控生色團在適當的時間與地點釋放?蛋白與生色團結合的作用力,以及蛋白釋放生色團時的作用機制,至今仍有許多值得我們深入研究與探討的問題。

Neocarzinostatin is a potent antitumer antibiotic chromoprotein, consisting of a labile cytotoxic chromophore that is non-covalently associated with a protective carrier protein, aponeocarzinostatin. The release of chromophore from the chromoprotein has been demonstrated to be a key step in DNA cleavage on the course of its cytotoxic activity. We previously reported that F78 residue on the opening of the binding cleft of aponeocarzinostatin plays an important role in gating the chromophore release. To further investigate the releasing mechanism, here we continue our mutation study at the position of F78 residue. Various mutants bearing different side-chains in place of F78 in aponeocarzinostatin have been made. The results obtained from circular dichroism and nuclear magnetic resonance spectroscopic analyses indicate that the native protein conformation is conserved in these mutants. After chromophore reconstitution, kinetic studies of chromophore release were performed on each mutant by monitoring the time course of fluorescence. Comparison of release rate among neocarzinostatin mutants suggests that mutants bearing aromatic side-chains at position 78 are able to sustain similar release rate as that of wild-type. While in circumstances aliphatic residues are in place of F78, the release rate increases corresponding approximately to the length of aliphatic side-chains. Meanwhile, shape and hydrophobicity of the aliphatic side-chain also appear to influence the release rate. In addition, mutants bearing basic amino acid residues in place of F78 lead release rate to increase significantly, even though theses mutants maintain the same architecture as the one wild-type has. The above results may provide potentially useful information for improving the drug delivery system in neocarzinostatin.
其他識別: U0005-1508200814370300
Appears in Collections:化學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.