Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16704
標題: 光還原奈米金於二氧化鈦之電化學研究
Electrochemical study of Photo-reduced gold nanoparticles deposited on TiO2
作者: 翁千翔
Weng, Chyan-Syang
關鍵字: Gold nanoparticles;奈米金;TiO2;Epinephrine;Screen Printed Carbon Electrode;二氧化鈦;腎上腺素;網版印刷碳電極
出版社: 化學系所
引用: [1] A. Fujishima, K. Honda, Nature, 238, 1972, 37-38. [2] A.L. Linsebigler, G..Q. Lu, J.T. Yates, Chem. Rev., 98, 1995, 735-758. [3] D. Bahnemann, J.J. Testa, D. Rodriguez, M.I. Litter, N. Bruno, J. Photochem. Photobiol., A: Chem., 148, 2002, 247-255. [4] M.I. Litter, Appl. Catal. B, 23, 1999, 89. [5] P.V. Kamat, Nano Lett., 3, 2003, 353-358. [6] V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc., 126, 2004, 4943-4950. [7] P. Pichat, J.-M. Herrmann, J. Disdier, H. Courbon, M.N. Mozzanega, Nouv. J. Chim., 5, 1981, 627. [8] T. Teranishi, I. Kioyokawa, M. Miyake, Adv. Mater., 10, 1998, 596-599. [9] J.S. Bradley, The Chemistry of Transition Metal Colloids. In Clusters and Colloids. G. Schmid Ed., VCH Publishers: New York, NY (USA), 1994, 459-537. [10] J.K. Burdett, T. Hughbands, J.M. Gordon, J.W. Richardson, Jr., J.V. Smith, J. Am. Chem. Soc., 109, 1987, 3639-3646. [11] M. Anpo, T. Shima, S. Kodama, J. Phys. Chem., 91, 1987, 4305-4310. [12] V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov, Appl. Catal. B: Environ., 63, 2006, 266-271. [13] V. Iliev, D. Tomova, L. Bilyarska, A. Eliyas, L. Petrov, Catal. Commun., 5, 2004, 759-763. [14] E.S. Bardos, H. Czili, A. Horvath, J. Photochem. Photobiol. A: Chem., 154, 2003, 195-201. [15] C.C. Chen, C.S. Lu, F.D. Mai, C.S. Weng, J. Hazard. Mater. B, 137, 2006, 1600-1607. [16] A. Orlov, D. A. Jefferson, M. Tikhov, R. M. Lambert, Catal. Commun., 8, 2007, 821-824. [17] C.M. Whang, J.G. Kim, H.J. Hwang, Key Eng. Mater., 280-283, 2005, 647-650. [18] L. Wang, L. Jing, L. Xue, Y. Qu, H. Fu, J. Hazard. Mater., 160, 2008, 208-212. [19] M.I. Litter, Appl. Catal. B, 23, 1999, 89-114. [20] E.C. Butler, A.P. Davis, J. Photochem. Photobiol. A: Chem., 70, 1993, 273-283. [21] M. Fujihira, Y. Satoh, T. Osa, Bull. Chem. Soc. Jpn., 55, 1982, 666. [22] J.M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett., 108, 1984, 618. [23] H.H. Kim, S. Tsubota, M. Date, A. Ogata, S. Futamura, Appl. Catal. A: General, 329, 2007, 93-98. [24] V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, J. Mol. Catal. A: Chem., 263, 2007, 32-38. [25] F.B. Li, X.Z. Li, Appl. Catal. A: General, 228, 2002, 15-27. [26] A.Orlov, D.A. Jefferson, M. Tikhov, R.M. Lambert, Catal. Commun., 8, 2007, 821-824. [27] M.A. Centeno, M.C. Hidalgo, M.I. Dominguez, J.A. Navio, J.A. Odriozola, Catal. Lett., 123, 2008, 198-206. [28] R.S. Sonawane, M.K. Dongare, J. Mol. Catal. A: Chem., 243, 2006, 68-76. [29] V. Subramanian, E.E. Wolf, P.V. Kamat, Langmuir, 19, 2003, 469-474. [30] A. Dawson, P.V. Kamat, J. Phys. Chem. B, 105, 2001, 960-966. [31] N. Chandrasekharan, P.V. Kamat, J. Phys. Chem. B, 104, 2000, 10851-10857. [32] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, V. Iadakiev, Catal. Today, 75, 2002, 169-175. [33] D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, A. Travlos, Catal. Today, 72, 2002, 51-57. [34] W.H. BATES, M.D., New York Medical Journal, May 16, 1896, pp. 647-650, The use of extract of suprarenal capsule in the eye. [35] B.R. Copper, R.M. Wightman, J.W. Jogenson, J. Chromatogr. B, 653, 1994, 25-34. [36] M.A. Fotopoulou, P.C Loannou, Anal. Chim. Acta, 462, 2002, 179-185. [37] S. Shelkovnikov, H.C. Gonick, Life Sci., 75, 2004, 2765-2773. [38] L.Y. Zhang, S.F. Qv, Z.L.Wang, J.K. Cheng, J. Chromatogr. B, 792, 2003, 381-385. [39] S.L. Wei, G.Q. Song, J.M. Li, J. Chromatogr. A, 1098, 2005, 166-171. [40] J. Michalowski, P. Halaburda, Talanta, 55, 2001, 1165-1171. [41] X. Zheng, Z. Guo, Z. Zhang, Anal. Chim. Acta, 441, 2001, 81-86. [42] S.H. Kim, J.W. Lee, I.H. Yeo, Microchim Acta, 45, 2000, 2889-2895. [43] L.M. Niu, H.Q. Luo, N. B. Li, Microchim Acta, 150, 2005, 87-93. [44] S.F. Wang, D. Du, Q. C. Zou, Talanta, 57, 2002, 687-692. [45] J. Zhang, M. Kambayasji, M. Oyama, Electroanaysis, 17, 2005, 5-6. [46] L. Wang, J. Bai, P. Huang, H. Wang, L. Zhang, Y. Zhao, Electrochem. Commun., 8, 2006, 1035-1040. [47] Z. Yang, G. Hu, X. Chen, J. Zhao, G. Zhao, Colloids and Surfaces B: Biointerfaces, 54, 2007, 230-235. [48] J.A. Ni, H.X. Ju, H.Y. Chen, D. Leech, Anal. Chim. Acta, 378, 1999, 151-157. [49] 劉金典,科儀新知,第九卷第二期,1997.11。 [50] R.N. Adams, Electrochemistry at Solid Electrodes. New York, copying 1978 Marcel, 80. [51] J. Malyszko, E. Malyszko, E. R-Ferchichi, M. Kaczor, Anal. Chem. Acta, 376, 1998, 357-364. [52] N. Malyszko, D. Popovic, K.C. Johnson, Anal. Chem., 70, 1998, 468-472. [53] S. Joiret, M. K. Nóvoa, X. P. Pérez, M. C., C. R., Cem. Concr. Compos., 24, 2002, 7-15. [54] 廖俊彥,國立中興大學化學系博士論文,97年。 [55] Skoog, Principles of instrumential analysis, 5th edn., 611. [56] M.S. EI-Deab, T. Oshaka, Electrochem. Commun., 4, 2002, 288-292. [57] 楊智超,國立中興大學化學系博士論文,94年。 [58] M. Kosmulski, E. Maczka, J.B. Rosenholm, J. Phys. Chem. B, 106, 2002, 2918-2921. [59] M. Haruta, Catal. Today, 36, 1997, 153-166. [60] M.S. EL-Deab, T. Oshaka, J. Electroanal. Chem., 553, 2003, 107-115. [61] H.M. Zhang, X.L. Zhou, R.T. Hui, N.Q. Li, D.P. Liu, Talanta, 56, 2002, 1081-1088. [62] J.H. Zagal, M.J. Aguirre, C.G. Parodi, J. Electroanal. Chem., 374, 1994, 215-222. [63] M.K. Halbert, R.P. Baldwin, Anal. Chem., 57, 1985, 591-595. [64] J. Wang. Analytical electrochemistry, second edition, 31. [65] 羅卿文,國立中興大學化學系碩士論文,85年。 [66] 洪啟倫,國立中興大學化學系碩士論文,96年。
摘要: 
本論文的研究方向可分為兩大部份,第一部份著重在利用二氧化鈦(TiO2)於紫外光照射後產生強還原力的電子和強氧化力的電洞之特性,以金氯鹽溶液(HAuCl4)作為前驅物(precursor),在光還原法合成奈米金粒子之研究實驗中,藉由控制紫外光照光照射時間長短、改變不同pH值及添加甲醇的濃度等控制金粒徑大小。穿透式電子顯微鏡(Transmission electron microscopy, TEM)圖譜顯示此方法合成出金粒子,粒徑大小約為5 ~ 10 nm屬奈米等級。
一般而言,奈米金粒子的製備合成,需添加還原試劑和有機溶劑,反應過程中甚至需要加熱來加速其還原反應形成金屬奈米粒子,亦有研究需經過繁瑣的高溫退火或煆燒過程,使奈米金粒子固定於二氧化鈦載體上。本研究取決於實驗中不須添加還原試劑或冗長的高溫煆燒過程,其優點為還原效果佳、操作設備小、操作程序簡單、能源消耗少。
第二部份我們將成功合成的奈米金/二氧化鈦粉末,混合異丙醇製備成奈米金溶液,經由超音波震盪後,取3 uL奈米金溶液,直接修飾於網版印刷碳電極(Screen Printed Carbon Electrode, SPCE),製備成奈米金網版印刷電極,並將此電極結合流動注入系統應用於電化學分析,在此研究中,對於偵測腎上腺素可得到很好的靈敏度,其偵測極限(LOD = 0.05 uM)及線性範圍(1 uM ~ 300 uM)。此外,以環盤網版印刷碳電極(Screen Printed Ring-Disk Electrode, SPRDE)修飾奈米金和二氧化錳於盤電極(Disk electrode)與環電極(Ring electrode),藉以探討氧氣及雙氧水還原反應之電化學行為。

The Master thesis research work carried out here is divided into two major parts, the first part focuses on the development of composite gold-titanium dioxide (TiO2) nanoparticles (nano-Au/TiO2) and the second part deals with its application as an electrochemical sensor. We use tetrachloroauric acid solution (HAuCl4) as a precursor in photo- reduction of gold nanoparticles on TiO2. The gold nano particles size can be varied by exposure of UV light irradiation time, pH values and different concentration of methanol. The as prepared composite gold-titanium dioxide nanoparticles are then characterized for morphological aspects by Transmission Electron Microscopy (TEM) and Energy Dispersive Spectrometer (EDS). The synthesized composite nano particle were found to be about 5-10 nm in size. Previous works addressed about the preparation of gold nanoparticles on TiO2, with the addition of reducing reagents (like NaBH4 and sodium citrate) or organic solvents in the process, some methods even need heating to accelerate the reduction rate of metal nanoparticles, and also use complicated process of annealing or calcination at high temperature for making gold nanoparticles on the surface of TiO2. Compared to these works, the advantages of our proposed method including no tedious process involved or heating while in the preparation step without the addition of any reducing agents.

In the second part, the as prepared nano-Au/TiO2 powder is mixed with isopropanol solution and ultrasonicated, 3 uL of ultrasonicated mixture is then directly dip-coated on a screen printed carbon electrode, The nano-Au/TiO2 electrode is then used for electrochemical studies combined with flow injection analysis (FIA) for the analysis of epinephrine. Voltammetric studies and FIA provides a very good sensitive method for the determination of epinephrine and the linear range was found to be 1 uM ~ 300 uM with a detection limit of 0.05 uM.
At the same time, an attempt is made to prepare nano-Au/TiO2, combined MnO2 screen printed ring-disk electrode (SPRDE) for electrochemical studies. The ring of the electrode is modified with MnO2 and disk with nano-Au/TiO2. The modified electrode exhibits excellent electrocatalytic response to the reduction of oxygen and hydrogen peroxide.
URI: http://hdl.handle.net/11455/16704
其他識別: U0005-2912200823140200
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.