Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16723
DC FieldValueLanguage
dc.contributor高漢謀zh_TW
dc.contributor陳繼添zh_TW
dc.contributor黃瑞賢zh_TW
dc.contributor柯寶燦zh_TW
dc.contributor.advisor林助傑zh_TW
dc.contributor.author洪文周zh_TW
dc.contributor.authorHung, Wen-Chouen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:56:05Z-
dc.date.available2014-06-06T06:56:05Z-
dc.identifierU0005-1407200912034900zh_TW
dc.identifier.citation1. Salmoral, E.M.; Gonzalez, M.E., Mariscal, M.P. Industrial Crops and Products. 2000, 11, 217-225. 2. Bismarck, A.; Aranberri-Askargorta, I.; Springer, J.; Lampke, T.; Wielage, B.; Samboulis, A.; Shenderovick, I.; Limbach, H. Polymer Composites 2002, 23, 872-894. 3. Chau, H.; Yu, P. 1999. Water Science and Technolog 1999, 39, 273-280. 4. Jopski, T. Starch. 1993, 83, 17-20. 5. Huang, J. C.; Shetty, A. S.; Wang, M. S. Advances in Polymer Technology 1990, 10, 23-30. 6. (a) Athanasiou, K. A.; Niederauer, G. G.; Agrawal, C. M. Biomoterids 1996, 17, 93-102. (b) Pihlajamti, H.; Kinnunen, J.; Bijstman, O. Biomoterial 1997, 18, 1311-1315. (c) Moran, J. M.; Pazzano, D.; Bonassar, L. J. Tissue Eng. 2003, 9, 63-70. (d) Jee, K. S.; Park, H. D.; Park, K. D.; Kim, Y. H.; Shin, J.-W. Biomacromolecules, 2004, 5, 1877-1881. (e) Hunt, J. A.; Callaghan, J. T. Knee Surg Sports Traumatol Arthrosc 2008, 16, 655-660. (f) Thi, T. H.; Matsusaki, M.; Akashi, M. Chem. Commun. 2008, 3918-3920. 7. Okada, M. Prog. Polym. Sci. 2002, 27, 87-133. 8. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev. 2004, 104, 6147-6176. 9. (a) Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskov, V.; Torchilin, V.; Langer, R. Science 1994, 263, 1600-1603. (b) Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Nature (London) 1997, 388, 860-862. (c) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841-1846. (d) Vinka, E. T. H.; Rábagob, K. R.; Glassnerb, D. A.; Gruberb, P. R. Polym. Degrad. and Stabil 2003, 80, 403-419. (e) Lickorisha, D.; Guana, L.; Daviesa, J. E. Biomaterials 2007, 28, 1495-1502; (f) Slomkowski, S. Macromol. Symp. 2007, 253, 47-58. (g) DIlario, L.; Francolini, I.; Martinelli, A.; Piozzi, A.; Macromol. Rapid Commun. 2007, 28, 1900-1904; (h) Huang, C.-K.; Lo, C.-L.; Chen, H.-H.; Hsiue, G.-H. Adv. Funct. Mater. 2007, 17, 2291-2297. 10. (a) Gibson, V. C.; Marshall, E. L.; Navarro-Llobet, D.; White, A. J. P.; Williams D. J. J. Chem. Soc., Dalton Trans. 2002, 4321-4322. (b) O'Keefe, B. J.; Monnier, S. M.; Hillmyer, M. A.; Tolman W. B. J. Am. Chem. Soc. 2001, 123, 339-340. (c) O'Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 4384-4393. (d) Wang, X.; Liao, K.; Quan, D.; Wu Q. Macromolecules 2005, 38, 4611-4617. (e) Chen, M.-Z.; Sun, H.-M.; Li, W.-F.; Wang, Z.-G.; Shen, Q.; Zhang, Y. J. Organomet. Chem. 2006, 691, 2489-2494. 11. (a) Kricheldorf, H. R.; Kreiser-Saunders, I.; Stricker, A. Macromolecules 2000, 33, 702-709. Kowalski, A.; Libiszowski, J.; Duda, A.; Penczek, S. Macromolecules 2000, 33, 1964-1971. (b) Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; Williams, D. J. Chem. Commun. 2001, 283-284. (c) Aubrecht, K. B.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 2002, 35, 644-650. (d) Nimitsiriwat, N.; Marshall, E. L.; Gibson, V. C.; Elsegood, M. R. J.; Dale, S. H. J. Am. Chem. Soc. 2004, 126, 13598-13599. (e) Dove, A. P.; Gibson, V. C.; Marshall, E. L.; Rzepa, H. S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2006, 128, 9834-9843. 12. (a) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072-4073 (b) Radano, C. P.; Baker, G. L.; Smith, M. R. J. Am. Chem. Soc. 2000, 122, 1552-1553. (c) Liu, Y.-C.; Ko, B.-T.; Lin, C.-C. Macromolecules 2001, 34, 6196-6201. (d) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316-1326. (e) Hsueh, M.-L.; Huang, B.-H.; Lin C.-C. Macromolecules 2002, 35, 5763-5768 (f) Zhong, Z.; Dijkstra, P. J.; Feijen, J. J. Am. Chem. Soc. 2003, 125, 11291-11298. (g) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688-2689 (h) Du, H.; Pang, X.; Yu, H.; Zhuang, X.; Chen, X.; Cui, D.; Wang, X.; Jing, X. Macromolecules 2007, 40, 1904-1913. (i) Du, H.; Velders, A. H.; Dijkstra, P. J.; Zhong, Z.; Chen, X.; Feijen, J. Macromolecules, 2009, 42, 1058-1066. 13. (a) Takeuchi, D.; Nakamura, T.; Aida, T. Macromolecules 2000, 33, 725-729. (b) Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.; Nakamura, A. ; Yasuda, H.; Harada, A. Macromolecules 2002, 35, 7538-7544. (c) Kim, Y.; Verkade, J. G. Macromol. Rapid Commun. 2002, 23, 917-921. (d) Russell, S. K.; Gamble, C. L.; Gibbins, K. J.; Juhl, K. C. S.; Mitchell, W. S.; Tumas, A. J; Hofmeister, G. E. Macromolecules 2005, 38, 10336-10340. (e) Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahon, M. F. Inorg. Chem. 2006, 45, 2282-2287. (f) Sarazin, Y.; Howard, R. H.; Hughes, D. L.; Humphrey, S. M.; Bochmann, M. Dalton Trans. 2006, 340-350. (g) Gregson, C. K.; Blackmore, I. J. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; White, A. J. P. Dalton Trans. 2006, 3134-3140. (h) J. Chmura, M. G. Davidson, M. D. Jones, Matthew D. Lunn, M. F. Mahon, A.; Johnson, A. F.; Khunkamchoo, P.; Roberts, S. L.; Wong, S. S. F. Macromolecules 2006, 39, 7250-7257; (i) Gendler, S.; Segal, S.; Goldberg, I.; Goldschmidt, Z.; Kol, M. Inorg. Chem. 2006, 45, 4783-4790; (j) Lee, J.; Kim, Y.; Do, Y. Inorg. Chem. 2007, 46, 7701-7703. (k) Umare, P. S.;Tembe, G. L.; Rao, K. V.; Satpathy, U. S.; Trivedi, B. J. Mol. Catal. A: Chem. 2007, 268, 235-243. (l) Chmura, A. J; Davidson, M. G.; Frankis, C. J.; Jones M. D.; Lunn, M. D. Chem. Commun. 2008, 1293-1295. (m) Kim, E.; Shin, E. W.; Yoo, I.; Chung J. S. J. Mol. Catal. A-Chem. 2009, 298, 36-39. 14. (a) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583-11584. (b) Chisholm, M. H.; Gallucci, J. C.; Zhen, H.; Huffman, J. C. Inorg. Chem. 2001, 40, 5051-5054. (c) Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 15239-15248. (d) Chen, H.-Y.; Huang, B.-H.; Lin, C.-C. Macromolecules 2005, 38, 5400-5405. (e) Chen, H.-Y.; Tang, H.-Y.; Lin, C.-C. Macromolecules 2006, 39, 3745-3752. (f) Huang, B.-H.; Lin, C.-N.; Hsueh, M.-L.; Athar, T.; Lin, C.-C. Polymer 2006, 47, 6622-6629. (g) Chen, C.-T.; Chan, C.-Y.; Huang, C.-A.; Chen, M.-T.; Peng, K.-F. Dalton Trans. 2007, 4073-4078. (h) Pang, X.; Chen, X.; Zhuang, X.; Jing, X. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 643-649. (i) Jones, M. D.; Davidson M. G.; Keir, C. G.; Hughes, L. M.; Mahon, M. F.; Apperley, D. C. Eur. J. Inorg. Chem. 2009, 635-642. (j) Bcrner, J.; Flcrke, U.; Huber, K.; Dcring, A.; Kuckling, D.; Herres-Pawlis S. Chem. Eur. J. 2009, 15, 2362-2376. (k)Jones, M. W.; Davidson, M. G.; Keir, C. G.; Hughes, L. M. Mahon, M. F.; Apperley, D. V. Eur. J. Inorg. Chem. 2009, 635-642. (l) Labourdette, G.; Lee, D. J.; Patrick, B. O.; Ezhova, M. B.; Mehrkhodavandi, P. Organometallics, 2009, 28, 1309-1319. 15. (a) Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845-11854. (b) Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. J. Chem. Soc., Dalton Trans. 2001, 222-224. (c) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229-3238. (d) Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Inorg. Chem. 2002, 41, 2785-2794. (g) Wang, Z.-X.; Qi, C.-Y. Organometallics 2007, 26, 2243-2251. 16. (a) Shueh, M.-L.; Wang,Y.-S; Huang, B.-H.; Kuo, C.-Y.; Lin, C.-C. Macromolecules 2004, 37, 5155-5162. (b) Yu, T.-L.; Wu, C.-C.; Chen, C.-C.; Huang, B.-H.; Wu, J.; Lin, C.-C. Polymer 2005, 46, 5909-5917. (c) Marshall, E. L.; Gibson, V. C.; Rzepa, H. S. J. Am.Chem. Soc. 2005, 127, 6048-6051. (d) Wu, J.; Yu, T.-L.; Chen, C.-T.; Lin, C.-C. Coord. Chem. Rev. 2006, 250, 602-626. (e) Wu, J.; Chen, Y.-Z.; Hung W.-C.; Lin, C.-C. Organometallics, 2008, 27, 4970-4978. 17. (a) Zhong Z., Dijkstra P. J., Brig C., Westerhausen M., Feijen J. Macromolecules 2001, 34, 3863-3868. (b) Chisholm M. H., Gallucci J., Phomphrai K. Chem. Commun. 2003, 48-49. (c) Chisholm M. H., Gallucci J., Phomphrai K. Inorg. Chem. 2004, 43, 6717-6725. 18. (a) Ko, B.-T.; Lin, C.-C. J. Am. Chem. Soc. 2001, 123, 7973-7979. (b) Chisholm, M. H.; Lin, C.-C.; Galluccia, J. C.; Ko, B.-T. Dalton Trans. 2003, 406-412. (c) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704-2705. (d) Hsueh, M.-L.; Huang, B.-H.; Wu, J.; Lin, C.-C. Macromolecules 2005, 38, 9482-9487. (e) Huang, B.-H.; Ko, B.-T.; Athar, T.; Lin, C.-C. Inorg. Chem. 2006, 45, 7348-7356. (f) Huang, C.-A.; Chen, C.-T. Dalton Trans. 2007, 5561-5566. 19. Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460-462. 20. (a) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17, 3149-3151. (b) Bauers, F. M.; Mecking, S. Angew. Chem. Int. Ed. 2001, 40, 3020-3022. (c) Bauers, F. M.; Mecking, S. Macromolecules 2001, 34, 1165-1171. (d) Hu, T.; Tang, L. M.; Li, X. F.; Li, Y. S.; Hu, N. H. Organometallics 2005, 24, 2628-2632. (e) Lee, B. U.; Bazan, G. C.; Vela, J.; Komon, Z. J. A.; Bu, X. J. Am.Chem. Soc. 2001, 123, 5352-5353. 21. (a) Nimitsiriwat, N.; Marshall, E. L.; Gibson, V. C.; Elsegood, M. R. J.; Dale, S. H. J. Am. Chem. Soc. 2004, 126, 13598-13599. (b) Zhang, C.; Wang, Z.-X. J. Organomet. Chem. 2008, 693, 3151-3158. (c) Lewinski, J; Horeglad, P.; Dranka, M; Justyniak, I Inorg. Chem. 2004, 43, 5789-5791 (d) Nimitsiriwat, N; Gibson, V. C.; Marshall, E. L.; Elsegood, M. R. J. Inorg. Chem. 2008, 47, 5417-5424. (e) Iwasa, N.; Shohei Katao, S.;. Liu, J.; Fujiki, M.; Furukawa, Y.; Nomura, K. Organometallics 2009, 28, 2179-2187. 22. Chisholm, M. H; Gallucci, J. C.; Zhen, H.; Huffman, J. C. Inorg. Chem. 2001, 40, 5051-5054. 23. Wu, J.-C; Huang, B.-H.; Hsueh, M.-L.; Lai, S.-L.; Lin, C.-C. Polymer 2005, 46, 9784-9792. 24. Chen, H.-Y.; Tang, H.-Y.; Lin, C.-C. Polymer 2007, 48, 2257-2262. 25. Darensbourg, D. J.; Choi, W.; Karroonnirun O.; Bhuvanesh, N. Macromolecules, 2008, 41, 3493-3502. 26. (a) Ejfler, J.; Szafert, S.; Mierzwicki, K.; Jerzykiewicz, L. B.; Sobota, P. Dalton Trans., 2008, 6556-6562. (b) Zheng, Z.; Zhao, G.; Fablet, R.; Bouyahyi, M.; Thomas, C. M.; Roisnel, T.; Casagrande, O. Jr.; Carpentier, J.-F. New J. Chem., 2008, 32, 2279-2291. 27. (a) Williams, C. K.; Brooks, N. R; Hillmyer M. A.; Tolman, W. B. Chem. Commun. 2002, 2132-2133. (b) Breyfogle, L. E.; Williams, C. K.; Young, V. G. Jr.; Hillmyer M. A.;. Tolman, W. B. Dalton Trans. 2006, 928-936. 28. Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young, V. G., Jr.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2003, 125, 11350-11359. 29. Ejfler, J.; Kobyłka, M.; Jerzykiewicz, L. B.; Sobota, P. Dalton Trans. 2005, 2047-2050. 30. (a) Yu, R.-C.; Hung, C.-H.; Huang, J-H; Lee, H-Y; Chen, J-T. Inorg. Chem. 2002, 41, 6450-6455. (b) Lee, W.-Y.; Hsieh, H.-H.; Hsieh, C.-C.; Lee, H.-M.; Lee, G.-H.; Huang, J.-H.; Wu, T.-C.; Chuang, S.-H. J. Organomet. Chem. 2007, 692, 1131-1137. 31. H.-Y. Tang, H.-Y. Chen, J.-Y. Huang and C.-C. Lin, Macromolecules 2007, 40, 8855-8860 32. Huang, Y.; Hung, W.-C.; Liao, M.-Y.; Tsai, T.-E.; Peng, Y.-L.; Lin, C.-C. J Polym Sci Part A: Polym Chem 2009, 47, 2318-2329. 33. (a) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841-1846. (b) Chiellini, E.; Solaro, R. Adv. Mater. 1996, 8, 305-313. 34. (a) Stolt, M.; Sodergard, A. Macromolecules 1999, 32, 6412-6417. (b) O'Keefe, B. J.; Monnier, S. M.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2001, 123, 339-340. (c) O'Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 4384-4393. (d) Gibson, V. C.; Marshall, E. L.; Navarro-Llobet, D.; White A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002, 4321-4322. (e) Wang, X.; Liao, K.; Quan, D.; Wu, Q. Macromolecules 2005, 38, 4611-4617. 35. (a) Save, M.; Schappacher, M.; Soum, A. Macromol. Chem. Phys. 2002, 203, 889-899. (b) Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Macromol. Rapid Commun. 1997, 18, 325-333. 36. The GPC measurements were performed on a Waters 2414 Isotratic HPLC Pump system equipped with a differential Refractive Index detector using THF (HPLC grade) as an eluent. The chromatographic column was Water Styragel Column (HR-1, HR-2, and HR-4) and the calibration curve was made by polystyrene standards to calculate Mn(GPC). 37. (a) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283-315. (b) Inoue, Y.; Matyjaszewski, K. Macromolecules 2003, 36, 7432-7438. (c) Groysman, S.; Sergeeva, E.; Goldberg, I.; Kol, M. Eur. J. Inorg. Chem. 2006, 2739-2745. (d) Cox, A. R. F.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; Yeldon, D. Dalton Trans. 2006, 5014-5023. 38. (a) Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; White, A. J. P. ; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002, 415-422. (b) Paschke, R.; Liebsch, S.; Tschierske, C.; Oakley, M. A.; Sinn, E. Inorg. Chem. 2003, 42, 8230-8240. (c) Darensbourg, D. J.; Choi, W.; Richers, C. P. Macromolecules 2007, 40, 3521-3523. (d) Hung, W.-C.; Lin, C.-C. Acta Cryst. 2007, E63, m3174. 39. Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986-993. 40. (a) Alcazar-Roman, L. M.; O'Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. Dalton Trans. 2003, 3082-3087. (b) Gregson, C. K. A.; Blackmore, I. J.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; White, A. J. P. Dalton Trans. 2006, 3134-3140. 41. (a) Gong, S.; Ma, H. Dalton Trans. 2008, 3345-3357. (b) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688-2689. (c) Chisholm, M. H.; Gallucci, J. C.; Krempner, C.; Polyhedron, 2007, 26, 4436-4444. 42. Hadjichristidis, N.; Pispas, S.; Floudas, G. A. In: Block copolymers. Synthetic strategies, physical properties, and applications. Wiley, Weinheim, 2003. 43. Holden, G. L.; Schröder, H. E. Thermoplastic Elastomers: A comprehensive review; Hanser: Munchen, Germany, 1987. 44. Sperling, L. H. Multicomponent Materials: An Introduction; John Wiley & Sons: New York, 1997. 45. Munk, P.; Aminabhavi, T. M. Introduction to Macromolecular Science; John Wiley & Sons: New York, 2002. 46. Holmberg, K. J. B.; Kronberg, B.; Lindman, B. Surfactants and polymers in aqueous solution; John Wiley & Sons: New York, 2003. 47. (a) Zhang Z, Feng S.-S. Biomaterials 2006, 27, 262-270. (b) Lee, S. H.; Zhang, Z.;. Feng, S.-S. Biomaterials 2007, 28, 2041-2050. (c) Pan, J.; Feng, S.-S. Biomaterials 2008, 29, 2663-2672. 48. Riley, T.; Stolnik, S.; Heald, C. R.; Xiong, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R. Langmuir 2001, 17, 3168-3174. 49. Riley, T.; Stolnik, S.; M. C. Garnett, L. Illum, S. S. Davis, P. Taylor, Th. F. Tadros, Langmuir 2002, 18, 7663-7668 50. Zhiping Z.; Feng, S. Biomaterials, 2006, 27, 4025-4033. 51. (a)Huang, B.-H.; Lin, C.-N.; Hsueh, M.-L.; Athar, T.; Lin, C.-C. Polymer 2006, 47, 6622-6629; (b) Hsueh, M.-L.; Wang, Y.-S.; Huang, B.-H.; Kuo, C.-Y.; Lin, C.-C. Macromolecules 2004, 37, 5155-5162. 52. (a) Chen, C.-T.; Huang, C.-A.; Huang, B.-H. Macromolecules 2004, 37, 7968-7973; (b) Martin, E.; Dubois, P.; Jerome, R. Macromolecules 2000, 33, 1530-1535; (c) Martin, E.; Dubois, P.; Jerome, R. Macromolecules 2003, 36, 5934-5941. 53. This part of work was done by Prof. Lia group, department of chemistry, National Chung Hsing University. 54. Mondal, N.; Dey, D. K.; Mitra, S.; Malik, K.M. A. Polyhedron 2000, 19, 2707-2711. 55. Sanmartín, J.; Novio, F.; García-Deibe, A. M.; Fondo, M.; Bermejo, M. R. New J. Chem. 2007, 31, 1605-1612. 56. G. M. Sheldrick, SADABS, Program for area detector adsorption correction, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996. 57. G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16723-
dc.description.abstract本研究之目的是(1) 探討取代基之電子效應對Schiff-base金屬化合物在環酯類聚合反應催化活性的影響 (2) 合成共聚合物使用在藥物傳遞系統。 雖然,Schiff-base金屬形式的催化劑已經被報導,但是對亞胺基碳上取代基立障和電子效應的研究卻是很少。為了此研究目的,一系列Schiff-base鋅[LZn(μ-OBn)]2 (1b-8b)和鎂LMg(μ-OBn)]2 (1c-9c)化合物被合成出來。二乙基鋅分別與配位基(L1H-L8H)反應產生[(μ-L)ZnEt]2 (1a-8a),接著化合物1a-8a與苯甲醇反應產生相對應化合物 [LZn(μ-OBn)]2 (1b-8b)。單晶繞射結構研究顯示化合物1a-8a都以酚基的氧原子為架橋之雙核結構,化合物1b-8b也是雙核構型但透過苄氧基的氧原子連接中心金屬。Mg(OBn)2 與等當量的Schiff-base配位基(L1H-L9H)在甲苯下產生錯合物[LMg(μ-OBn)]2 (1c-9c)。化合物2c、3c、5c、7c、8c經由單晶繞射研究顯示所有這些化合物為五配位雙核結構以苄氧基的氧原子連接的中心的鎂原子。化合物1b-8b及1c-9c在乳酸交酯的開環聚合反應有良好的反應性及分子量控制性,合成的聚合物分子分佈度很狹窄。實驗結果顯示鋅化合物1b-8b之亞胺基碳上官能基的變化對催化活性有顯著的影響。鎂化合物1c-9c催化活性受到配位基上電子效應的影響。 為了合成共聚合物使用在藥物傳遞系統,[(MPTHQ)ZnEt]類型的鋅錯合物被合成。2-(2-methoxyphenyl)-3-tosyl-1,2,3,4-tetrahydroquinazoline (MPTHQ) (L10H)和二乙基鋅在甲苯下產生化合物10,晶體結構顯示化合物10是雙核四配位結構經由磺胺基的氧原子連接金屬中心。化合物10在苯甲醇的存在下對開環聚合反應具有良好的控制性,隨著單體與起始劑的比例增加,數目平均分子量呈現性成長且分子量分布度很狹窄。此外poly-(ethylene glycol) methyl ether-b-poly(lactide) (PEG-b-PLA) 和 poly(lactide)-b-tocopheryl polyethylene glycol succinate (PLA-b-TPGS)共聚合物已經被合成且經由核磁共振鑑定。zh_TW
dc.description.abstractThe objectives of the present investigations are (1) to study the electronic effect of the substituents affecting the activity of Schiff-base metal complexes on the polymerization rate of cyclic ester and (2) to synthesize block copolymers for use in drug delivery system. Although, extensive investigations on the Schiff-base metal type catalysts have been reported, studies on the steric and electronic effect of the substituents on imine carbon are rare. For this purpose, a series of zinc(II) and magnesium(II) complexes of the type [LZn(μ-OBn)]2 (1b-8b) and LMg(μ-OBn)]2 (1c-9c) supported on NNO-tridentate Schiff-base ligands have been synthesized. The reactions of diethyl zinc (ZnEt2) L1H-L8H yielded [(μ-L)ZnEt]2 (1a-8a), respectively. Further reaction of compounds 1a-8a with benzyl alcohol (BnOH) produced the corresponding compounds of [LZn(μ-OBn)]2 (1b-8b), respectively. The X-ray crystal structural studies reveal that all of these compounds 1a-8a are dimeric bridging through the phenolato oxygen atoms. However, compounds 1b-8b are dimeric character bridging through the benzylalkoxy oxygen atoms. The reactions of Mg(OBn)2 with one molar equivalent of related Schiff-base ligands (L1H-L9H) in toluene produce [LMg(μ-OBn)]2 (1c-9c) complexes. The X-ray crystal structural studies of compounds 2c, 3c, 5c, 7c, and 8c reveal that all of these compounds are penta-coordinated dimmers with the central magnesium atoms bridging by the oxygen atoms of benzyl alkoxides. All the complexes 1b-8b and 1c-9c proceeds rapidly with good molecular weight control, and yields polymers with a very narrow molecular weight distribution toward the ring-opening polymerization of L-lactide. Experimental results show that for complexes 1b-8b, the substituents on the imine carbon of the NNO-ligand affect the reactivity of zinc complexes dramatically. For the complexes 1c-9c, the reactivity is affected by the electronic effect of the substituents on the Schiff-base ligands. To synthesize block copolymers for use in drug delivery system, zinc complex [(MPTHQ)ZnEt]2 10 supported by bidentate sulfonamide ligand is designed. The reaction of 2-(2-methoxyphenyl)-3-tosyl-1,2,3,4-tetrahydroquinazoline (MPTHQ) (L10H) with ZnEt2 in toluene produced [(MPTHQ)ZnEt]2 10, and the X-ray crystal structural studies reveals that complex 10 is dinuclear bridging through the sulfoxide oxygen atoms and tetra-coordinated around the central metal atom. In the presence of benzyl alcohol, metal complex 10 gives rise to controll the ring-opening polymerization of lactide as shown by the linear relationship between the monomer-to-initiator ratio and the number-average molecular weight with low polydispersity indexes. In addition, block copolymers such as poly-(ethylene glycol) methyl ether-b-poly(L-lactide) (PEG-b-PLA) and poly(lactide)-b-tocopheryl polyethylene glycol succinate (PLA-TPGS) have also been prepared and characterized by NMR spectroscopy. Experimental results indicate that these block copolymers are potentially useful for drug delivery systems.en_US
dc.description.tableofcontentsChapter 1 Introduction 1.1 Biodegradable polymers 1 1.2 Schiff-base ligands 3 1.3 Amino-phenolate ligands 6 1.4 Ketimate ligands 8 Chapter 2 Efficient Initiators for the Ring-Opening Polymerization of L-Lactide: Synthesis and Characterization of NNO-Tridentate Schiff-base Zinc Complexes 2.1 Introduction 11 2.2 Results and discussion 12 2.2.1 Synthesis and structural studies of Schiff base ligands 12 2.2.2 Synthesis of zinc complexes 15 2.2.3 Molecular Structure Studies of zinc complexes 16 2.2.4 Polymerization of L-Lactide 27 2.2.5 Steric effects of the NNO-tridentate ligands 29 2.2.3.6 Mechanistic studies 31 2.3 Summary 32 2.4 Experimental 32 2.4.1 Synthesis of ligands (L2H-L9H) 32 2.4.2 Synthesis of zinc ethyl complexes 37 2.4.3 Synthesis of zinc benzyl alkoxy complexes 42 2.4.4 Typical polymerization procedures 46 2.4.5 Crystallographic data 47 Chapter 3 Preparation, Characterization and Catalytic Studies of Magnesium Complexes Supported by NNO-Tridentate Schiff-base Ligands 3.1 Introduction 51 3.2 Results and discussion 53 3.2.1 Synthesis and spectroscopic studies 53 3.2.2 Molecular Structure Studies 54 3.2.3 1H NMR Variable Temperature Studies 63 3.2.4 Ring-opening Polymerization of L-Lactide 66 3.2.5 Mechanistic studies 71 3.3 Summary 72 3.4 Experimental Section 73 3.4.1 Synthesis of magnesium alkoxides 73 3.4.2 Typical Polymerization Procedures 78 3.4.3 Crystallographic data 78 Chapter 4 Synthesis and Characterization of a NNO-Tridentate Zinc Complex: Its Application in the Preparation of Diblock Copolymers PEG-b-PLA and TPGS-b-PLA 4.1 Introduction 80 4.2 Results and Discussion 82 4.2.1 Synthesis and structural determination82 4.2.2 Ring-opening polymerization of L-lactide catalyzed by complex 10 84 4.2.3 Synthesis of diblock copolymer PEG-b-PLA 86 4.2.4 Synthesis of diblock copolymer TPGS-b-PLA 86 4.2.5 Characterization of PLA-TPGS Doxorubicin-loaded micelles 93 4.3 Summary 95 4.4 Experimental Section 96 4.4.1Synthesis of ligand L10H 96 4.4.2 Synthesis of Zn complex 10 96 4.4.3 Polymerization of L-Lactide Catalyzed by 10 97 4.4.4 Synthesis of Diblock Copolymer PEG-b-PLA 98 4.4.5 Synthesis of Diblock CopolymerTPGS-b-PLA 95 4.4.6 Characterization of micelles 99 Chapter 5 Conclusions 102 Chapter 6 General Informations 6.1 Materials 105 6.2 Measurements 105 6.2.1. NMR spectra 105 6.2.2. Elemental analysis (EA) 105 6.2.3. Gel Permeation Chromatography (GPC) 106 6.2.4. X-ray crystallographic studies 106 Chapter 7 References 108 Appendices 119en_US
dc.language.isoen_USzh_TW
dc.publisher化學系所zh_TW
dc.subjectSchiff-Baseen_US
dc.subjectSchiff-Basezh_TW
dc.subjectzincen_US
dc.subjectMagnesiumen_US
dc.subjectRing-Opening Polymerizationen_US
dc.subjectLactideen_US
dc.subjectzh_TW
dc.subjectzh_TW
dc.subject開環聚合反應zh_TW
dc.subject乳酸交酯zh_TW
dc.title含NNO三牙Schiff-Base之鋅和鎂錯化合物的合成及結構鑑定: 乳酸交酯開環聚合反應的良好催化劑zh_TW
dc.titleSynthesis and Characterization of NNO-Tridentate Schiff-Base Zinc and Magnesium Complexes: Efficient Initiators for the Ring-Opening Polymerization of L-Lactideen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.grantfulltextnone-
Appears in Collections:化學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.