Please use this identifier to cite or link to this item:
標題: 低驅動電壓之微機電射頻開關
Low Driving Voltage RF MEMS Switch
作者: 陳俊翰
Chen, Jing-Han
關鍵字: MEMS;微機電;RF switches;CPW;actuator;CMOS;post-process;射頻開關;共平面波導;致動器;互補式金氧半導體;後製程
出版社: 機械工程學系所
引用: [1]J. J. Yao, “RF MEMS from a device perspective” J. Micromech. Microeng.10 R9-R38, 2000. [2]RF MEMS, Conventor Inc., [3]C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE,Vol. 86, No. 8, Aug. 1998, pp. 1756-1768. [4]G. L Tan and G. M. Rebeiz, “A DC-contact MEMS shunt switch” IEEE Microwave Wireless Compon. Lett., Vol. 12, June 2002, pp. 212. [5]E. R. Brown, “RF-MEMS switches for reconfigurable Integrated Circuits,” IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 11, November 1998, pp. 1868. [6]K. E. Petersen, “Micromechanical membrane switches on silicon,” IBM J. Res. Develop, Vol. 23, No. 4, July 1979, pp. 376-385. [7]L. E. Larson, R. H. Hackett, M. A. Melendes, and R. F. Lohr, “Micromachined microwave actuator (MIMAC) technology-a new tuning approach for microwave integrated circuits,” IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, Boston, MA, June 1991, pp. 27-30. [8]J. J. Yao, and M. F. Chang, “A surface micromachined miniature switch for telecommunication applications with signal frequencies from DC up to 4GHz,” The eighth International Conference on, Solid State Sensors and Actuators, 1995, pp. 384-387. [9]V. Milanovic, M. Gaitan, E. D. Bowen, and M. E. Zaghloul, “Micromachined coplanar waveguides in CMOS technology,” IEEE Microwave and Guided Wave Letters, Vol. 6, No. 10 , Oct. 1996, pp. 380-382. [10]C. Goldsmith, Y. Zhimin, S. Eshelman, and D. Denniston, “Performance of low-loss RF MEMS capacitive switches,”IEEE Microwave and Guided Wave Letters,vol. 8 , No. 8 , Aug. 1998, pp. 269-271. [11]Z. J Yao, S Chen, S Eshelman, D Denniston, and C. Goldsmith, “Micromachined low-loss microwave switches,” Journal of Microelectromechanical Systems, Vol. 8, No. 2, June 1999, pp. 129-134. [12]S. Pacheco, C. T. Nguyen, and L. P. B. Katehi, “Micromechanical electrostatic K-band switches,” Microwave Symposium Digest, 1998 IEEE MTT-S International Vol. 3, 7-12 June 1998, pp.1569-1572. [13]S. C. Shen and M. Feng, “Low actuation voltage RF MEMS switches with signal frequencies from 0.25 GHz to 40 GHz,” Proceedings of IEEE International Electronics Device Meeting, December 1999, pp. 689-692. [14]J. Y. Park, G. H. Kim, K. W. Chung, and J. U. Bu, “Electroplated RF MEMS capacitive switches,” The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 23-27 Jan. 2000, pp. 639-644. [15]J. B. Muldavin, and G. M. Rebeiz, “High-isolation CPW MEMS shunt switches. 1. Modeling,” Microwave Theory and Techniques, IEEE Transactions on Vol. 48, No. 6, June 2000, pp.1045-1052. [16]J.B. Muldavin, and G. M. Rebeiz, “High-isolation CPW MEMS shunt switches. 2. Design,” IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 6, June 2000, pp.1053-1056. [17]S. Barker, and G. M. Rebeiz, “Distributed MEMS true-time delay phase shifters and wide-band switches,” Microwave Theory and Techniques, IEEE Transactions on Vol. 46, No. 11, Part 2, Nov. 1998, pp. 1881-1890. [18]J. B. Muldavin, and G. M. Rebeiz, “Inline capacitive and DC-contact MEMS shunt switches,” Microwave and Wireless Components Letters, IEEE Vol. 11, No. 8, Aug. 2001, pp. 334-336. [19]Y. S. Hijazi, Y. A. Vlasov, and G. L. Larkins, “Design of a superconducting MEM shunt switch for RF applications,” Applied Superconductivity, IEEE Transactions on Vol. 13, No 2, Part 1, June 2003, pp. 696-699. [20]R. Ramadoss, S. Lee, Y. C. Lee, V. M. Bright, and K.C. Gupta, “Fabrication, assembly, and testing of RF MEMS capacitive switches using flexible printed circuit technology,” IEEE Transactions on Advanced Packaging, Vol. 26, No. 3, Aug. 2003, pp. 248-254. [21]K. U. Harms, and J. T. Horstmann, “Fabrication concept for a CMOS-compatible electrostatically driven surface MEMS switch for RF applications,” Microelectronic Engineering, Vol. 73, 2004, pp. 468-473. [22]M. Tang, A.B.Yu, A. Q. Liu, A. Agarwal, S. Aditya, and Z. S. Liu, “High isolation X-band MEMS capacitive switches,” Sensors and Actuators, A: Physical, Vol. 120, No. 1, Apr. 29 2005, pp. 241-248. [23]G. M. Rebeiz, and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Magazine, Vol.2, No. 4, December 2001, pp. 59-71. [24]F. M. Guo, Z.Q. Zhu, Y. F. Long, W. M. Wang, S. Z. Zhu, Z. S. Lai, N. Li, G.. Q. Yang, , and W. Lu, “Study on low voltage actuated MEMS rf capacitive switches,” Sensors and Actuators, A: Physical, Vol. 108, No. 1, Nov. 15 2003, pp. 128-133. [25]H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS - present and future,” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, 20-24 Jan. 2002, pp. 459-466. [26]D. Peroulis, S.P. Pacheco, K. Sarabandi, and L. P. B Katehi, “Electromechanical considerations in developing low-voltage RF MEMS switches,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, Jan. 2003, pp.259-270. [27] [28]J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A.Q. Liu, “Mechanical design and optimization of capacitive micromachined switch,” Sensors and Actuators, A: Physical, Vol. 93, No. 3, Oct 15 2001, pp.273-281. [29]J. B. Muldavin, and G. M. Rebeiz, “Nonlinear electro-mechanical modeling of MEMS switches,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 2001, pp. 2119-2122. [30]Coventor Inc., CoventorWare Version 2004 Tutorials. [31]O. Paul, D. Westberg, M. Hornung, V. Ziebart, and H. Baltes, “Sacrificial aluminum etching for CMOS microstructures,” Proceedings of IEEE Tenth Annual International Workshop on MEMS, 26-30 Jan. 1997, pp. 523-528. [32]J Bühler, F-P Steiner, and H Baltes, “Silicon dioxide sacrificial layer etching in surface micromachining,” J. Micromech. Microeng., Vol.7, 1997, R1-R13. [33]Transene Company Inc., [34]David M. Pozar, Microwave engineering, 3rd ed. Hoboken, Wiley, 2005. [35]RF Measurement, Chip Implementation Center Training Manual, January 2004, pp. 164. [36]A. Ziaei, T. Dean, and J. P. Polizzi, “Lifetime characterization of capacitive RF MEMS switches,” Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol. 5716, 2005, pp.113-121. [37]G. M. Rebeiz, RF MEMS :Theory, Design, and Technology, John Wiley & Sons, 2003. [38]W. Fang, “Design of bulk micromachined suspensions,” Journal of Micromechanics and Microengineering, Vol. 8, No. 4, Dec. 1998, pp.263-271. [39]O. Powell, and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,”Journal of Micromechanics and Microengineering, Vol. 11, No. 3, May 2001, pp. 217-220. [40]J. Tsaur, C. H. Du, and C. Lee, “Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect,” Sensors and Actuators, A: Physical, Vol. 92, No. 1, Aug. 1 2001, pp.375-383. [41]G. Yan, P. C. H. Chan, I. M. Hsing, R. K. Sharma, J. K. O. Sin, and Y. Wang, “Improved TMAH Si-etching solution without attacking exposed aluminum,” Sensors and Actuators, A: Physical, Vol. 89, No. 1, Mar. 2001, pp.135-141. [42]莊達人,VLSI製造技術,高立圖書有限公司,2003。 [43]行政院國家科學委會,微機電系統技術與應用,精密儀器發展中心出版,2003。 [44]彭宣榕,以蝕刻CMOS氧化層的後製程處理方法製作微機電射頻開關,國立中興大學碩士論文,2005。 [45]廖一遂,射頻微機電開關理論析與設計,國立中興大學碩士論文,2003。
本研究利用標準0.35μm 2P4M (double polysilicon four metal) CMOS (complementary metal oxide semiconductor)製程來製作低驅動電壓之微機電射頻開關,開關是以電容耦合(capacitive coupling)的方式進行運作,是一種以靜電力為驅動的開關,開關的結構包含了共平面波導(coplanar waveguide)的傳輸線和一個架構於其上的薄膜,共平面波導與薄膜是利用CMOS製程裡的金屬層製作,後製程蝕刻氧化矽層,然後將薄膜懸浮。在設計上改變結構的彈簧係數降低開關的驅動電壓,並探討開關的切換速度及操作壽命。達成開關所需的最小吸附電壓(pull-in voltage)為8伏特,在頻率40GHz時插入損失為-3.2dB;當開關被施以驅動電壓後,隔絕度為-14.5dB;而微機電射頻開關的切換速度為4.44μs,操作壽命的作動次數超過3百萬次。

This work investigates the fabrication of RF (ratio frequency) MEMS (Micro electro mechanical system) switches using the standard 0.35μm 2P4M (double polysilicon four metal) CMOS (complementary metal oxide semiconductor) process and the post-process. The switches are a capacitive type, which are actuated by an electrostatic force. The structure of the switches consists of a CPW (coplanar waveguide) transmission lines and a suspended membrane. The CPW lines and the membrane are the metal layers of the CMOS process. The post-process uses an etchant to etch oxide layer to release the suspended membrane. The low spring constant is adopted to reduce the driving voltage of the switches. The switching time and the switch lifetime are also studied. Achieved lowest pull-in voltage of the switches is 8V. The insertion loss and isolation at 40GHz are -3.2 dB and -14.5dB, respectively. The measured switching time is 4.44μs. The switches have demonstrated lifetimes more than 3000000 switching cycles.
其他識別: U0005-2305200614103100
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.