Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1675
標題: 光彈相位展開限制之修正技術研究
The spatial correction technology for eliminating ambiguity from temporal phase unwrapping
作者: 廖福佑
Liao, Fu-Yo
關鍵字: photoelasticity;光彈;temporal phase unwrapped;spatial phase unwrapped;空間域;時間域;相位展開
出版社: 機械工程學系所
引用: [1] Mawatari,A.,Takashi M.and Toyoda Y., “Whole-Area Photoelastic Analusis by Image Processing on the Principal Stress Direction and Saparation of Isochromatics from Isoclinics”,Trans. Of JSME,Ser.A,Vol 55,NO.514pp.1423-1428(1989). [2] Wang Z.F.,Patterson E,A., “Towards Full Field Automates photoelastic Analysis of Complex Components”,Strain, Vol. 27,May ,pp.49-53(1991). [3] Wang Z.F.,Patterson E,A., “Use of phase-stepping with demodulation and guzzy sets for birefringence measurement”.Opt Lasers Enf Vol.22 pp.99-104(1995). [4] Sai Prasad V., Madhu K.R and Ramesh K., “Towards effective phase unwrapping in digital photoelasricity”,Opt Lasers Eng Vil. 42 pp. [5] Villa, J., Quiroga, J. a., Pascual, E., Pascual. “Determination of Isoclinics in photoelasticity with a Fast Regularized Estimatior”. Optics in Lasers in Engineering, Vol.46,pp.236-242,2008 [6] K. Ashokan, K. Ramesh, “A novel approach for ambiguity removal in isochromatic phasemap in digital photoelasticity,” Measurement Science and Technology, 2006, vol.17, pp.2891-2896. [7] Chen, T. Y., “A simple Method for the Digital Determination of the Photoelastic Fringe Order”,Experimental Mechanics, Vol.40,N03,2000 [8] K. Ramesh, D.K.Tamrakar, “Improved determination of retardation in digital photoelasticity by load stepping,” Optics and Lasers in Engineering, 2000, vol.33, pp.387-400. [9] Liu,T.,Asundi A., Boay,C.G., “Full Field Automated Photoelasticity Using Two-Load-Step Method,”Opt,Enf.,Vol.40,No 8,pp.1629-1635,2001 [10] Nurse, A. D., Load-stepping Photoelasticity:New Developments Using Temporal Phase Unwrapping, Optics and Lasers in Engineering,Vol. 38 pp.57-70,2002 [11] Baldi, A., Bertolino,F.,Ginesu,F., “A Temporal Phase Unwrapping Algorithm for Photoelastic Sress Analysis”, Optics and Lasers in Engineering,Vol.45,pp.612-617,2006 [12] N.Plouzennec,A.Lagarde., “Two wavelenghh Method for Full-field Automated Photoelasticity”Vol.39 No 4,1999 [13] Barone, S., Burriesci,G., Petrucci,G. “Computer Aided Photoelasticity by an Optimum Phase Stepping Method ”,Experimental Mechanics,Vol,42,No.2,2002 [14] S Yoneyama., H. Kikuta, “Phase-stepping Photoelasticity by Use of Retarders with Arbitrary Retardation”, Experimental Mechanics,Vol.46,pp.289-296,2006 [15] K. Ramesh, D.K.Tamrakar, “Noise-free Determinnation Isochromatic Fringe Order by load steppin,”Strain Vol.38,pp.11-15,2002 [16] Kihara,T., An Arctangent Unwrapping Technique of Photoelasticity Using Linearly Polarized Light at Three Wavelengths,Stain,Vol.39,pp.65-71,2003 [17] S. Barone, G. Burriesci, G. Petrucci, “Computer aided photoelasticity by an optimum phase stepping method,” Experimental Mechanics, 2002, vol.42, no.2, pp.132-139. [18] L. D’Acquisto, G. Petrucci, B. Zuccarello, “Full field automated evaluation of the quarter wave plate retardation by phase stepping technique,” Optics and Lasers in Engineering, 2002, vol.37, pp.389-400. [19] P.S. Theocaris, E.E. Gdoutos, “Matrix theory of photoelasticity,” New York, Springer-Verlag Berlin Heidelberg, 1979. [20] G. Petrucci, “Full field automatic evaluation of an isoclinic parameter in white light,” Experimental Mechanics, 1997, vol.37, no.4, pp.420-426. [21] J.A. Quiroga, C.A. Gonazalez, “Phase measuring algorithm for extraction of isochromatics of photoelastic fringe patterns,” Applied Optics, 1997, vol.36, no.32, pp.8397-8402. [22] P. Pinit, E. Umezaki, “Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique,” Optics and Lasers in Engineering, 2007, vol.45, pp.795-807. [23] J. Villa, J.A. Quiroga, E. Pascual, “Determination of isoclinics in photoelasticity with a fast regularized estimator,” Optics and Lasers in Engineering, 2008, vol.46, pp.236-242. [24] 吳國安,「光彈相位圖不連續點之探討與改善」,中興大學機械工程學研究所碩士論文,2008。 [25] 龔黃光、黃柏文、陳鴻雄,「ANSYS與電腦輔助工程分析」,全華科技圖書股份有限公司,2004。
摘要: 
在實驗應力分析中,光彈應力分析可取得全場以及快速,因此是很普遍而且許多人研究的一種技術。而光彈法主要得到兩樣有用的數據,一個是等色線,另一個是等傾角線,等色線是表示量測物體之相對延遲量,也就是物體上的主應力差,而等傾角線表示的是主應力角,也就是物體上各點受力的方向。一般光彈應力分析會使用相移法來取得這兩樣數據,但相移法受限於數學上反正切函數之週期性,會有包裹情形發生,因此解決包裹情形之相位展開成為必要的技術。
而相位展開技術粗略分為時間域及空間域。本論文主要探討時間域展開法在π以內的限制,並利用空間域的方式解決。而其實驗上會有許多問題,例如兩力法有多點施力的準確性,物體施力易搖動以及物體變形之類的問題,而兩波長法也有波板誤差的影響或是對光敏感係數的掌握不易解決。
時間域相位展開法因其限制以及實驗上的困難而不易實行,但其快速以及不用劃分區域這些優點都不是空間域相位展開法可以取代的,因此在論文中提出解決的辦法使其較易掌握。

Photoelasticity is the whole field optical method in the stress analysis field which can offer two kinds of information, one is Isochomatic and another is Isoclinic. The Isoclinic represents object's principal stress direction and Isochomatic represents object's principal stress difference.
In general we usually used phase shift to obtain isochomatic and isoclinic, but due to the limitation on the period of arctangent, the phenomenon of wrapping would happen. Therefore, phase unwrap, the technique for solving wrapping, becomes crucial.
Phase unwrap can be roughly characterize into temporal phase unwrapping and special phase unwrapping. The main theme of this paper is to discuss the limitation of temporal phase unwrap within pi and how to solve the limitation using special phase unwrapping. However, the application of this method faces many problems, for example, the accuracy of two-load-method, the mobility and deformation of objects. Also, the effect of the error from the retarder and light sensitivity from two-wavelength-method are hard to handle.
Temporal phase unwrapping is hard to execute due to the limitation and the difficulty of application, but the speed and the property of boundary free are two strengths that spatial phase unwrapped cannot replace.
URI: http://hdl.handle.net/11455/1675
其他識別: U0005-2308201115382500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.