Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16775
標題: Nafion 修飾型紅外光感測器量測尿液中肌酸酐含量之效果探討
Development of Nafion-treated Infrared Chemical Sensing System for Detecting Creatinine in Urine Sample
作者: 余奕麟
Yu, Yi-Lin
關鍵字: Infrared;紅外光;ATR;Nafion;Creatinine;減弱式全反射;Nafion;肌酸酐
出版社: 化學系所
引用: 1. M. Wyss, R.Daouk, “Creatine and Creatinine Metabolism”, Physiological Review, 2000, 80, 1108-1213. 2. 游蘇寧編著, 最新人體標準正常值手冊 , 桂冠出版社, 1999. 3. K. D. McClatchey, Clinical Laboratory Medicine, 2nd edition, Lippincott Wiliams & Wilkins, 2002. 4. S. Narayana, H. D. Appleton, “Creatinine:a review”, Clin. Chem. 1980, 26, 1119-1126. 5. L. A. Kaplan, A. J. Pesce, Clinical Chemistry Theory, Analysis and Correlation. Baker & Taylor Books, 1997. 6. M. L. Bishop, J. L. Duben-Engelkrik, E. P. Fody, Clinical Chemistry, Principles, Procedures, Correlation, 4th edition, Lippincott Williams & Wilkins, 2004. 7. L. D. Bowers, E. T. Wong, “Kinetic Serum Creatinine Assays. a Critical Evaluation and Review”, Clin. Chem. 1980, 26, 551-554. 8. A. J. Lustgarten, E. R. Wenk, “Simple, Rapid, Kinetic Method for Serum Creatinine Measurement”, Clin. Chem.1972, 18, 1419-1422. 9. T. Osaka, S. Komaba, A. Amano, Y. Fujino, H. Mori, “Electrochemical Molecular Sieving of the Polyion Complex Film for Designing Highly Sensitive Biosensor for Creatinine”, Sens. Actuators B 2000, 65, 58-63. 10. G. F. Khana, W. Wernet, “A Highly Sensitive Amperometric Creatinine Sensor”, Anal. Chim. Acta 1997, 351, 151-158. 11. Y. D. Yang, “Simultaneous Determination of Creatinine, Uric acid, Creatinine and Hippuric acid in Urine by High Performance Liquid Chromatography”, Biomed. Chromatogr. 1998, 12, 47-49. 12. K. Sreenivasan, R. Sivakumar. “Interaction of Molecularly Imprinted Polymers with Creatinine”, J. Appl. Polym. Sci. 1997, 66, 2539-2542. 13. T. P. Delaney, V. M. Mirsky, O. S. Wolfbeis, “Capacitive creatinine sense based on a photografted molecularly imprinted polymer”, Electroanalysis 2002, 14, 221-224. 14. N. Harrick, Internal Reflection Spectroscopy, Willey, New York, 1967. 15. C. Vigano, J. M. Ruysschaert, E. Goormaghtigh, “Sensor Applications of Attenuated Total Reflection Infrared Spectroscopy”, Talanta 2005, 65, 1132-1142. 16. Z. Zhang, J. Pawliszyn, “Headspace Solid-Phase Microextraction”, Anal. Chem. 1993, 65, 1843-1852. 17. J. Heo, M. Rodrigues, S. J. Saggese, G. H. Sigel, Jr., “Remote Fiber-Optic Chemical Sensing Using Evanescent-Wave Interactions in Chalcogenide Glass Fibers”, Appl. Opt. 1991, 30, 3944-3951. 18. J. Yang, J. W. Her, “Gas-Assisted IR-ATR Probe for Detection of Volatile Compounds in Aqueous Solution”, Anal. Chem. 1999, 71, 1773-1779. 19. R. Gobel, R. Krska, R. Kellner, R. W. Seitz, S. A. Tomellini, “Investigation of Different Polymers as Coating Materials for IR/ATR Spectroscopic Trace Analysis of Chlorinated Hydrocarbons in Water”, Appl. Spectrosc. 1994, 48, 678-683. 20. R. Krska, R.Kellner, U. Schiessel, M. Tacke, A. Katzir, “Fiber Optic Sensor for chlorinated Hydrocarbons in Water Based on Infrared Fibers and Tunable Diode Lasers”, Appl. Phys. Lett. 1993, 63, 1868-1870. 21. M. C. Ertan-Lamontagne, S. R. Lowry, W. R. Seitz, S. A. Tomellini, Polymer-Coated, Tapered Cylindrical ATR Elements for Sensitive Detection of Organic Solute in Water”, Appl. Spectrosc. 1995, 49, 1170-1173. 22. J. Yang, H. S. Huang, “IR Chemical Sensor for Detection of Aromatic Compounds in Aqueous Solutions Using Alkylated Polystyrene-Coated ATR Waveguides”, Appl. Spectrosc. 2000, 54, 202-208. 23. J. Yang, H. C. Lin, “IR Chemical for Detection of Chlorinated Anilines in aqueous Solutions Based on ATR Waveguides Coated with Derivatized Polystyrene”, Analyst 2000, 125, 1605-1610. 24. G. Huang, J.Yang, “Selective Detection of Copper Ions in Aqueous Solution Based on Evanescent Wave Infrared Absorption Spectroscopic Method”, Anal. Chem. 2003, 75, 2262-2269. 25. Y. K. Wei, J. Yang, “Evanescent Wave Infrared Chemical Sensor Possessing a Sulfonated Sensing Phase for the Selective Detection of Arginine in Biological Fluids”, Talanta 2007, 71, 2007-2014. 26. Dupont, “Dupont Fuel Cell-DuPont Nafion PFSA membrane”, The Miracle of Science. 27. K. A. Mauritz, C. E. Rogers, “A Water Sorption Isotherm Model for Ionomer Membranes with Cluster Morphologies”, Macromolecules 1985, 18, 483-491. 28. J. Y. Li, S. Nemat-Nasser, ”Micromechanical Analysis of Ionic Clustering in Nafion Perfluorinated Membranes”, Mech. Mater. 2000, 32, 303-314. 29. H. W. Rollins, F. Lin, J. Johnson, J. J. Ma, J. T. Liu, M. H. Tu, D. D. DesMarteau, Y. P. Sun, “Nanoscale Cavities for Nanoparticles in Perfluorinated Ionomer Membranes”, Langmuir 2000, 16, 8031-8036. 30. S. Wang, P. Liu, X. Wang, X. Fu, “Homogeneously Distributed CdS Nanoparticles in Nafion Membranes: Preparation, Characterization, and Photocatalytic Properties”, Langmuir 2005, 21, 11969-11973. 31. J. Chou, S. Jayaraman, A. D. Ranasinghe, E. W. McFarland, S. K. Buratto, H. Meitiu, “Efficient Electrocatalyst Utilization: Electrochemical Deposition of Pt Nanoparticles Using Nafion Membrane as a Template”, J. Membr. Sci. 1983, 13, 307-326. 32. W. Y. Hsu, T. D. J. Gierke, “Ion Transport and Clustering in Nafion Perfluorinated Membrane“, J. Membr. Sci. 1983, 13, 307-326. 33. T. D. Gierke, G. E. Munn, F. C. J. Wilson, “The Morphology in Nafion Perfluorinated Membrane Product, as Determined by Wide and Small Angle X-ray Studies”, Polym. Sci., Polym. Phys. 1981, 19, 1687-1704. 34. C. L. Marx, D. F. Caulfield, S. L. Cooper, “Morphology of Ionomers”, Macromolecules 1973, 6, 344-353. 35. M. Fujimura, T. Hashimoto, H. Kawai, “Small-angle X-ray Scattering Study of Perfluorinated Ionomer Membrane. 1. Oringin of Two Scattering Maxima”, Macromolecules 1981, 14, 1309-1315. 36. M. Fujimura, T. Hashimoto, H. Kawai, Small-Angle X-ray Scattering Study of Perfluorinated Ionomer Membrane. 2. Model for Ionic Scattering Maximum”, Macromolecules 1982, 15, 136-144. 37. M. Falk, In Perfluorinated Ionomer Membranes A. Eisenberg, H. L. Yeager, ACS Symposium Series 180, American Chemical Society, Washington, DC, 1982, p. 1-6, 41-63. 38. H. G. Haubold, T. Vad, H. Jungbluth, P. Hiller, “Nanostructure of Nafion: a SAXS Study”, Electrochim. Acta 2001, 46, 1559-1563. 39. G. Gebel, “Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution”, Polymer 2000, 41, 5829-5838. 40. B. Hoyer, T. M. Florence, G. E. Batley, “Application of Polymer-Coated Glassy Carbon Electrodes in Anodic Stripping Volammetry”, Anal. Chem. 1987, 59, 1608-1614. 41. D. J. Harrison, R. F. B. Turner, H. P. Baltes, “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Anal. Chem. 1988, 60, 2002-2007. 42. O. M. Schuvailo, O. O. Solodatkin, A. Lefebvre, R. Cespuglio, A. P. Soldatkin, “Highly Selective Microbiosensors for in Vivo Measurement of Glucose, Lactate and Glutamate”, Anal. Chem. Acta 2006, 573-574, 110-116. 43. M. Dequaire, C. Degrand, B. Limoges, “An Immunomagnetic Electrochemical Sensor Based on a Perfluorosulfonate-Coated Screen-Printed Electrode for the Determination of 2,4-Dichlorophenoxyacetic Acid”, Anal. Chem. 1999, 71, 2571-2577. 44. F. Moussy, S. Jakeway, D. J. Harrison, R. V. Rajotte, “In Vitro and in Vivo Performance and Lifetime of Perfluorinated Ionomer-Coated Glucose Sensors after High-Temperature Curing”, Anal. Chem. 1994, 66, 3882-3888. 45. T. Selvaraju, R. Ramaraj, Electrochemically Deposited Nanostructured Platinum on Nafion Coated Electrode for Sensor Application”, J. Electroanal. Chem. 2005, 585, 290-300. 46. M. K. Amini, T. Momeni-Isfahani, J. H. Khorasani, M. Pourhossein, “Development of an Optical Chemical Sensor Based on 2-(5-Bromo-2-Pyridylazo)-5-(Diethylamino)Phenol in Nafion for Determination of Nickel Ion”, Talanta 2004, 63, 713-720. 47. D. Sun, X. Xiea, Y. Cai, H. Zhang, K. Wu, "Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film”, Anal. Chim. Acta 2007,581, 27–31. 48. T. J. Sands, T. J. Carwell, R. W. Carttrall, J. R. Farrell, P. J. Iles, S. D. Kolev, “A Highly Versatile Stable Optical Sensor Based on 4-Decyloxy -2-(2-Pyridylazo)-1-Naphthol in Nafion for the 4-Decyloxy-2-(2-Pyridylazo)-1-Naphthol in Nafion for the Determination of Copper”, Sens. Actuators B 2002, 85, 33-41. 49. G. Gelbard, “Organic Synthesis by Catalysis with Ion-Exchange Resins”, Ind. Eng. Chem. Res. 2005, 44, 8468-8498. 50. X. Lu, S. Wua, L. Wang, Z. Su, “Solid-State Amperometric Hydrogen Sensor Based on Polymer Electrolyte Membrane Fuel Cell”, Sens. Actuators B 2005, 107, 812-817. 51. R. Mukundan, E. L. Brosha, F. H. Garzon, “A low temperature sensor for the detection of carbon monoxide in hydrogen”, Solid State Ionics 2004, 175, 497-501. 52. Y. C. Luo, J. S. Do, "Urea Biosensor based on Ni(urease)-NafionR/Au Composite Electrode”, Biosens. Bioelectron 2004, 20, 15-23. 53. Y. M. Zhou, Z. Y. Wu, G. L. Shen, R. Q. Yu, “an Amperometric Immunosensor based on Nafion-modified Electrode for the Determination of Schistosoma Japonicum Antibody”, Sens. Actuators B 2003, 89, 292-298 54. F. Ricci, A. Amine, G. Palleschi, D. Moscone, “Prussian Blue based Screen Printed Biosensors with Improved Characteristics of Long-term Lifetime and pH Stability”, Biosens. Bioelectron 2003, 18, 165-174. 55. T. Yao, K. Kotegawa, “Simultaneous Flow-Injection Assay of Creatinine and Creatine in Serum by the Combined Use of a 16-way Switching Valve, some Specific Enzyme Reactors and a Highly Selective Hydrogen Peroxide Electrode”, Anal. Chim. Acta 2002, 462, 283-291. 56. E. Kilinc, G. Yetik, T. Dalbasti, M. Ozsoz, “Comparison of Electro- chemical Detection of Acetylcholine-Induced Nitric Oxide Release (NO) and Contractile Force Measurement of Rabbit Isolated Carotid Artery Endothelium”, J. Pharm. Biomed. Anal. 2002, 28, 345-385. 57. T. Xiaorong, F. Cheng, Y. Bing, Z. Wuming, “Determination of Nitric Oxide by Glassy Carbon Electrodes Modified with Poly(Neutral Red)”, Microchem. J. 1999, 62, 377-385. 58. W. Surareungchai, W. Deepunya, P. Tasakorn, “Quadruple-pulsed Amperometric Detection for Simultaneous Flow Injection Determination of Glucose and Fructose”, Anal. Chim. Acta 2001, 448, 215-220. 59. J. Lu, T. Lawrence, D. M. Robert. Worden, Ilsoon Lee, “Simple Fabrication of a Highly Sensitive Glucose Biosensor Using Enzymes Immobilized in Exfoliated Graphite Nanoplatelets Nafion Membrane”, Chem. Mater. 2007,19, 6240-6246. 60. K. H. Amitha, L. B. Heather, “Simultaneous Liquid Chromatographic Determination of Creatinine and Pseudouridine in Bovine Urine and the Effect of Sample pH on the Analysis”, J. Agric. Food Chem. 2003, 51, 4861-4865. 61. Y. K. Wei, J. Yang, “Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids”, Talanta 2007, 71, 2007-2014. 62. Dawson, R.M.C. et al., Data for Biochemical Research, Clarendon Press, Oxford, 1959. 63. R. T. Ambrose, D. F. Ketchum, J. W. Smith, “Creatinine Determined by High-Performance Liquid Chromatography”, Clin. Chem. 1983, 29, 256-259.
摘要: 
本研究採用紅外光減弱式全反射(attenuated total reflection, ATR)結合固相微量萃取法,利用紅外光於紅外光感測晶體內發生全反射,但當紅外光於密介質到疏介質時,發生約微米長的漸逝波穿出晶體,此時晶體上修飾之特殊高分子與欲分析之待測物間產生特殊作用力使分子濃縮於漸逝波範圍內,產生分子的特性吸收光譜,以此來定性或定量欲分析物種。本實驗使用 ZnSe 作為 ATR 晶體,以 Nafion 作為修飾於晶體上的高分子層,利用 Nafion 的化學惰性、與具親水性和疏水性共存形成親水性通道和磺酸根官能基團與肌酸酐(creatinine)的特殊作用力,達成微量分析和選擇性提升的目的。為了解 Nafion修飾元件之感測性質以及最佳化感測條件,本研究針對可能影響訊號分析之因子如修飾層的穩定度、覆膜方式及厚度、酸鹼值、選擇性、干擾行為、線性濃度區間和訊號再現性,皆詳加討論。實驗結果顯示,Nafion 修飾層的於水溶液中的穩定性良好,於酸性條件下可有效的快速感測肌酸酐,以訊號比雜訊等於三為依據,計算所得之偵測極限約為 460 nM,而線性範圍可至 150 μM,在干擾行為方面,為解決尿液樣品中眾多干擾基質,故本研究利用稀釋樣品降低訊號干擾,再利用標準添加法可快速準確的定量出尿液檢體中對肌酸酐含量。

A simple and fast method based on evanescent-wave infrared
spectroscopy was proposed in this research for determination of creatinine in urines. Nafion was selected to modify the surface of the sensing element to increase both the sensitivity and selectivity in the detection. Nafion bears sulfonic acid group and tends to form water
channels after treated on the sensing element. The water channels allow the interested molecules to rapidly penetrate onto the Nafion thin film to concentrate the analytes for detections. The functional group of sulfonic
acid provides both hydrogen bonding and charge interactions to selectively interact with specific compounds, such as creatinine. To examine the sensing properties of Nafion and to optimize the conditions for detection, factors such as the pH of the sample solutions, the film thickness of Nafion, the long-term stability of sensing phase, regeneration efficiency, interferences of the sensing phase and the linear range in detection were explored. Results indicated that the detection of creatinine favored an acidic condition to increase charge-charge interactions. Under a detection time of 1 min, detection limits around 460 nM could be obtained with a linear range up to 150 μM. In the analysis of interferences, Nafion modified phase has no response to negative charged species owing to the charge repulsion between sulfonate and interferences. Strong interactions from positive charged species were observed.
To minimize the interferences in real-world samples, a dilution technique was proposed and examined. This proposed method allows Nafion modified surface sensor to determine the levels of creatinine in the realworld samples accurately.
URI: http://hdl.handle.net/11455/16775
其他識別: U0005-3107200905390600
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.