Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/16780
標題: | 大環變形對三價鐵-(Oi-PTPP)Cl及三價鐵-(OETPP)CN卟啉電子組態的影響 Ring Deformation Mediated Electronic Structure of Iron(III) (Oi-PTPP)Cl and Iron(III) (OETPP)CN Porphyrins |
作者: | 李俞諼 Lee, Yu-Hsuan |
關鍵字: | Ring Deformation Mediated Electronic Structure of Iron(III) Porphyrins;大環變形對三價鐵卟啉電子組態的影響 | 出版社: | 化學系所 | 引用: | Reference (1) Dickinson, R. E. In. The Proteins; Neurath, H., Ed.; Academic Press: New York, 1964; Vol. 2, p 634. (2) Perutz, M.; Rossman, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C. T. Nature 1960, 185, 416. (3) Takano, T.; Trus, B. L.; Mandel, N.; Mandel, G.; Kallai, O. B.; Swanson, R.; Dickerson, R. E. J. Biol. Chem. 1977, 252, 776-785. (4) Scheidt, W. R.; Reed, C. A. Chem. Rev. 1981, 81, 543-555. (5) Goff, H.; La Mar, G. N.; Reed, C. A. J. Am. Chem. Soc. 1977, 99, 3641-3646. (6) Jentzen, W.; Simpson, M. C.; Hobbs, J. D.; Song, X.; Ema, T.; Nelson, N. Y.; Medforth, C. J.; Smith, K. M.; Veyrat, M.; Mazzanti, M.; Ramasseul, R.; Marchon, J. C.; Takeuchi, T.; Goddard, W. A.; Shelnutt, J. A. J. Am. Chem. Soc. 1995, 117, 11085-11097. (7) Barkigia, K. M.; Dolores Berber, M.; Fajer, J.; Medforth, C. J.; Renner, M. W.; Smith, K. M. J. Am. Chem. Soc. 1990, 112, 8851-8857. (8) Cheng, R.-J.; Chen, P.-Y.; Gau, P.-R.; Chen, C.-C.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 2563-2569. (9) Ema, T.; Senge, M. O.; Nelson, N. Y.; Ogoshi, H.; Smith, K. M. Angew, Chem. Int. Ed. Engl. 1994, 33, 1879. (10) Senge, M. O.; Ema, T.; Smith, K. M. Chem. Commun. 1995, 733. (11) Yasui, M.; Harada, S.; Kai, Y.; Kasai, N.; Kusunoki, M.; Matsuura, Y. J. Biochem. 1992, 111, 317-324. (12) Finzel, B. C.; Weber, P. C.; Hardman, K. D.; Salemme, F. R. J. Mol. Biol. 1985, 186, 627-643. (13) Cheng, R.-J.; Chen, P.-Y.; Peng, S.-M. submitted (14) Goff, H. M. Nuclear Magnetic Resonance of Iron Porphyrins. In Iron Porphyrin.; Lever, A. B. P.; Gray, H. B., Eds.; Physical Bioinorganic Chemistry series 1; Addison-Wesley: Reading, MA, 1983; p 237 (15) Goff, H.; La Mar, G. N.; Reed, C. A. J. Am. Chem. Soc. 1977, 99, 3641 (16) Kurland, R. J.; McGarvey, B. R. J. Magn. Resonance. 1970, 2, 286. (17) Jesson, J. P. The Paramagnetic Shift. In NMR of Paramagnetic Molecules.; La Mar, G. N., Horrocks, W. D., Holm, R. H., Eds.; Academic Press: New York, 1973; p 1-53 (18) McConnell, H. M. J. Chem. Phys. 1961, 35, 1312. (19) Walker, F. A. Proton NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins. In The Porphyrin Handbook.; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:, 2000; Vol. 5, p 165-299. (20) Goff, H. M. J. Am. Chem. Soc. 1981, 103, 3714 (21) Karplus, M.; Fraenkel, G. K. J. Chem. Phy. 1961, 35, 1312. (22) La Mar, G. N.; Walker, F. A. Nuclear Magnetic Resonance of Paramagnetic. In The Porphyrins. 1st.; Dolphin, D., Eds.; Academic Press: New York, 1979; Vol. 4, p 61-157. (23) La Mar, G. N. Biological Applications of Magnetic Resonance. In Biological Applications of Magnetic Resonance.; Shulman, R. G., Eds.; Academic Press: New York, 1979; p 305-343. (24) Walker, F. A.; Simonis, U. Proton NMR Spectroscopy. In NMR of Paramagnetic Molecules.; Berliner, L. J., Reuben, J., Eds.; New York, 1993; Vol. 12, p 133. (25) Shokhirev, N. V.; Walker, F. A. J. Phys. Chem. 1995, 99, 17795. (26) Gouterman, M. J. Chem. Phys. 1959, 30, 1139. (27) Zerner, M. C. Semiempirical Molecular Orbital Methods Ed.;Lipkowitz, K. B. and Boyd, D. B., Ed.;VCH Publishers: New York, 1991; Vol. 2, p 313-365. (28) Zerner, M. C. Intermediate Neglect of Differential Overlap Calculations on the Electronic Spectra of Transition Metal ComplexesEd.;Russo, N. and Salahub, D. R., Ed.;Kluwer Academic Publishers: Netherlands, 1996; Vol. 2 , p 493-531. (29) Edwards, W. D.; Diercksen, G. H. F.; Zerner, M. C. J. Mol. Struct. (Theochem). 1989, 199, 137-148. (30) Mispelter, J.; Momenteau, M.; Lhoste, J. M. J. Chem. Soc. Chem. Commun. 1979, 808-810. (31) 陳炳宇,中興大學化學系博士論文,2001. (32) Ghosh, A.; Gonzalez, E.; Vangberg, T. J. Phys. Chem. B. 1999, 103, 1363-1367. (33) Gedye, R. N.; Smith, F. E.; Westaway, K. C. Tetrahedron Lett.1986, 27, 279-282 (34) Kappe, C. O.; Stadler, A. Microwaves in organic and medicinal chemistry. (35) A. Petit; A. Loupy; Ph. Maillard and M. Momenteau, Synthetic Communications 1992, 22, 1137-1142 (36) S. M. S. Chauhan; B. B. Sahoo; K. A. Srinivas, Synthetic Communications 2001, 31, 33-37 (42) Dilek Kiper Dogutan; Marcin Ptaszek; and Jonathan S. Lindsey, J. Org. Chem. 2008, 73, 6187-6201 (43) Mark O. Liu; Chia-Hon Tai; Andrew Teh Hu, Materials Chemistry and Physics 2005, 92, 322-326 (44) Mark O. Liu; Andrew Teh Hu, Journal of Organometallic Chemistry 2004, 689, 2450-2455 (45) Nidhi Jain; Anil Kumar; S. M. S. Chauhan, Synthetic Communication, 2005, 35, 1223-1230 (46) Michelle L. Dean; Jason R. Schmink; Nicholas E. Leadbeater; Christian Bruckner, Dalton Trans., 2008, 1341-1345 Reference (1) Rothemund, P. J. J. Am Chem. Soc. 1935, 57, 2010. (2) Rothemund, P. J.; Menotti, G. D. J. Am Chem. Soc. 1941, 63, 267. (3) Alder, A. D.; Sklar, L.; Longo, F. R. J. Heterocycl. Chem. 1968, 5, 669. (4) Sessler, J. L.; Mozaffari, A.; Johnson, M. R. Org. Synth. 1991, 70, 68. (5) Ono, M.; Lattmann, R.; Imomota, K.; Lehmann, C.; Fruh, T.; Eschenmoser, A. Croat. Chem. Acta, 1985, 58, 627. (6) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A. Angew, Chem. Int. Ed. Engl. 1971, 10, 330. (7) Whitlock, H. W.; Hanauer, R. J. J. Org. Chem. 1968, 33, 2169 (8) Eisner, U.; Lichtarowicz, A.; Linstead, R. P. J. Chem. Soc. 1957,733. (9) Inhoffen, H. H.; Fuhrhop, J. H.; Voigt, H.; Brockmann, J. R. F. Ann. Chem. 1966, 695, 183. (10) Siedel, W.; Winkler, F. F. Ann. Chem. 1943, 554, 162. (11) Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098. (12) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron. 1990, 46, 7483. (13) Ono, N.; Kawamura, H.; Bougauchi, M. ; Maruyama, K. Tetrahedron. 1990, 46. (14) Aoyagi, K. ; Haga, T. ; Toi, H. ; Aoyama, Y. ; Mizutani, T. ; Ogoshi, H. Bull. Chem. Soc. Jpn. 1997, 70, 937. (15) Dolphin, D. J. Heterocyclic Chem. 1970, 7, 275. (16) Evens, B.; Smith, K. M.; Fuhrhop, J. H. Tetrahedron Lett. 1977, 443. (17) Lindsey, J.; Wagner, R. J. Org. Chem. 1987, 52, 827-836. (18) Ono, N.; Hironaga, H.; Simizu, K.; Kuwano, K.; Ogawa, K. J. C. S. Chem. Comm. 1994, 1019-1020. (19) Benjamin C. Milgram; Katrine Eskildsen; Steven M. Richter; W. Robert Scheidt; Karl A. Scheidt. J. Org. Chem. 2007, 72, 3941-3944. (20) R. Patra, S.P. Rath. Inorg. Chem. Comm. 2009, 12, 515-519. (21) Chang-Chih Hsieh, Wan-Jung Chao, Yih-Chern Horng Inorg. Chem. Comm. 2009, 12, 778-781. (22) Inoue, Yoshihisa; Victor, Borovkov; Juhs, Lintuluoto. (Japan Science and Technology Corporation, Japan). (23) Marie Landergren; Lars Baltzer Inorg. Chem. 1990, 29, 556-557. Reference (1) Lemon, B. J. ; Peters, J. W. JBiochemistry 1999, 38, 12970. (2) Wolowiec, S. ; Latos, L. Inorg. Chem. 1994, 33, 3576. (3) 陳炳宇,中興大學化學系碩士論文,2001 (4) 李長浤,中興大學化學系碩士論文,2003 (5) 韓雅萍,中興大學化學系碩士論文,2003 (6) 陳馨縈,中興大學化學系碩士論文,2004 (7) Evans J. Chem. Soc. 1959, 2003. (8) Loliger, J.; Scheffold, R. J. Chem.Educ. 1972, 49, 646. (9) Ostfeld, D.; Cohen, I. A. J. Chem.Educ. 1972, 49, 829. (10) Drago, R. S. Physical Methods for Chemists; ed.; Saunders College: New York, 1992. Reference (1) Barkigia, K. M.; Dolores Berber, M.; Fajer, J.; Medforth, C. J.; Renner, M. W.; Smith, K. M. J. Am. Chem. Soc. 1990, 112, 8851-8857. (2) Cheng, R.-J.; Chen, P.-Y.; Gau, P.-R.; Chen, C.-C.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 2563-2579. (3) Barkigia, K. M.; Chantranupong, L.; Smith, K. M.; Fajer, J. J. Am. Chem. Soc. 1988, 110, 7566-7567. | 摘要: | Metalloporphyrin compounds are well known to be a considerable of models in the active site of hemopoteins with respect to the interpretations of the biological activity and electronic configuration of central metal. Recently, a series of nonplanar heme were identified by crystal structures or molecular dynamics calculations, which infer the universality of the porphyrin ring deformation extensively existed in nature. Octaethyltetraphenylporphyrin (OETPP) was the early noticed nonplanar porphyrin with saddle-shaped deformation. Interestingly, its corresponding FeIII(OETPP)Cl is quantum-mixed intermediate spin state, which is very common for cytochrome c', an electron transfer protein, but different to the planar iron(III) porphyrin such as FeIII (TPP)Cl and FeIII (OEP)Cl with pure high spin state ( S=5/2 ). In this study, we report the synthesis and characterization of two five coordinate FeIII(OETPP)CN and FeIII(OiPTPP)Cl complexes. We employed spectroscopic techniques, including 1H NMR, 13C NMR, EPR, DFT theoretical calculations and the measurement of magnetic moment, to characterize and study the spin states with regard to porphyrin ring deformation. FeIII(OETPP)CN shows the reduced 1H NMR extent of FeIII(OETPP)Cl, ranging from 0 ppm to 25 ppm; the 13C NMR chemical shift of axial CN- ligand in a characteristic position of 13037 ppm, and the rest carbon peaks of the OETPP spread from -20 ppm to 400 ppm. The 77K EPR spectra are incompatible between pure solids, inclined to S = 3/2 and in the solvents, such as CH2Cl2 or CHCl3, with S = 1/2. This unusual conflict was proposed that the reassembly of axial CN- ligand and FeIII(OETPP) forms 6-coordinate FeIII(OETPP)(CN)2 in low temperature. The DFT calculations shows the diagnostic nuclear spin density which is proportional to the Fermi contact shift, the main contribution of paramagnetic NMR, with varied S = 3/2, 4A2 (dxy)2(dxz,yz)2(dz2)1, 4B1 (dxy)1(dxz2,yz1)(dz2)1,and 4B2 (dxy)1(dxz1,yz2)(dz2)1 and show the 4A2 most consistent to both of 1H NMR and 13C NMR data. Octaisopropyltetraphenylporphyrin ( OiPTPP ) is designed for more saddle-shaped deformation. The 1H NMR spectrum of FeIII(OiPTPP)Cl shows the upfiledward shifts comparing to FeIII(OETPP)Cl or FeIII(OMTPP)Cl. 77K EPR shows an axial symmetry spectrum with g⊥= 4, g// =2. These signals show Fe(OiPTPP)Cl a pure intermediate-spin state (S=3/2). In the lack of single crystal structure of Fe(OiPTPP)Cl, we adopt structure optimization by ADF calculation. The energy of intermediate-spin state (S=3/2) is the lowest than high-spin (S=5/2) and low-spin (S=1/2) , showing S=3/2 is a ground state for Fe(OiPTPP)Cl. Additionally, the magnitude of saddle-shaped deformation of Fe(OiPTPP)Cl is larger than Fe(OETPP)Cl and Fe(OMTPP)Cl crystal structure. Molecular orbital analyses further present when porphyrin ring symmetry lower to C2v and consequently the dx2-y2 and dz2 have same symmetry (a1) to mix with porphyrin a2u orbital. This orbital interaction will not only raise the dx2-y2 orbital higher than planar porphyrin but also enlarge the gap between dx2-y2 and dxy, which stabilizes the S = 3/2 spin state accordingly. |
URI: | http://hdl.handle.net/11455/16780 | 其他識別: | U0005-0408201018031400 |
Appears in Collections: | 化學系所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.