Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1685
標題: 入出口設計對微流道熱沉性能影響之數值探討
Numerical Study Of Inlet/Outlet Plenums Effects On Microchannel Heat Sink Performance
作者: 陳建華
Chen, Jang-hwa
關鍵字: microchannel heat sink;微流道熱沉;inlet/outlet arrangements;aspect ratios;流體進出口位置;流道深寬比
出版社: 機械工程學系所
引用: [1] Nam-Trung Nguyen Steven and T. Wereley, Fundamentals and Applications of Microfluidics, Artech Houseb. (2002) [2] D. B. Tuckermann and R. F. W. Pease, High performance heat sinking for VLSI, IEEE Electron Device Lett, EDL-2, pp. 126-129.(1981) [3] L. Meysenc, L. Saludjian, A. Bricard, S. Rael, C. Schaeffer, A High Heat Flux IGBT Micro Exchanger Setup, IEEE Transactions on Components, Packaging and Manufacturing Technology-Part, A 20, pp. 334-341. (1997) [4] R. W. Knight, D. J. Hall, J. S. Goodling, R. C. Jaeger, Heat Sink Optimization with Application to Microchannels, IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 15, pp. 832-842. (1992) [5] Phillips, R. J, Master's Thesis, Massachusetts Institute of Technology. (1987) [6] C. S. Landram, Computational Model for Optimizing Longitudinal Fin Heat Transfer in Laminar Flows, Heat Transfer in Electronic Equipment, ASME. (1991) [7] X. F. Peng and G. P. Peterrson, The effect of thermofluid and geometrical parameters on convection of Liquids through rectangular microchannels,Heat and Mass Transfer, Vol. 15, pp. 755-758. (1995) [8] W. Qu and I. Mudawar, Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Heat and Mass Transfer, Vol. 45, pp. 2549-2563 . (2001) [9] J. H. Ryu, D. H. Choi and S. J. Kim, Numerical optimization of the thermal performance of a microchannel heat sink, Heat and Mass Transfer, Vol. 45,pp. 2823-2827. (2001) [10] I. Tiselj, G. Hetsroni, B. Mavko, A. Mosyak, E. Pogrebnyak and Z. Segal,Effect of axial conduction on the heat transfer in micro- channels, Heat and Mass Transfer, Vol. 47, pp. 2551-2565. (2004) [11] M. C. Lu and C. C. Wang, Effect of the Inlet Location on the Performance of Parallel-Channel Cold-Plate, IEEE Transactions On Components And Packaging Technologies. (2005) [12] J. Li,G. P. Peterson and P. Cheng, Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow, Heat and Mass Transfer, Vol. 47, pp. 4215-4231. (2004) [13] P. S. Lee, S. V. Garimella and D. Liu, Investigation of heat transfer in rectangular microchannels, Heat and Mass Transfer, Vol. 48, pp.1688-1704.(2005) [14] A. Radmehr and S. V. Patankar, A flow network analysis of a liquid cooling system that incorporates microchannel heat sinks, IEEE Transactions On Inter Society Conference on Thermal Phenomena. (2004)
摘要: 
過去文獻模擬微流道熱沉之焦點多在單根流道上,並無對整個熱沉內部流場亦或熱場有所闡述,固本研究針對多根微流道熱沉做一完整模擬分析,並加以改變流體進出口位置進而得知對熱傳增益之影響與詳細流場、熱場全貌。本研究設計六種不同入出口位置之微流道熱沉,依其出入口位置樣貌命名為 I 型、N 型、D 型、S 型、U 型、V 型,其中 I 型、N 型、D 型、S 型皆為水平入出口,U 型、V 型則為垂直入出口(在玻璃上打洞使流體進出熱沉)。另一重點為改變上述六種不同入出口位置之微流道深寬比,以得知對熱沉散熱效果之影響。在流體流動方面定義邊界層為不可滑動,模擬穩態下,多根流道的流場情況。以了解在微流道晶片中不同位置之流體流速快慢。模擬結果發現在微流道晶片中四個角落流速極為緩慢且有部份渦流現象。在熱傳方面,假設流體為不可壓縮流時,施以等壁熱通量,探討不同的流體進出口位置對微流道溫度梯度分佈影響,在本文所設定各型入出口位置中熱傳效能為V型>U型>N型>D型>S型>I型,並比較微流道深寬比對熱傳之影響,發現在同樣入出口壓降時溫度場為α= 0.5 之微流道熱沉高於α=2 之微流道熱沉,符合文獻所知之趨勢。

In this study,fluid flow and heat transfer in microchannel heat sinks (MCHS) are numerically investigated. The three-dimensional governing equations for both fluid flow and heat transfer are solved using finite-volume scheme. The basic geometric configuration of the MCHS consists of inlet/out ports, inlet/out plenums, and microchannels. The particular focuses of this study are on the effects of inlet/outlet arrangements and channel aspect ratios on the fluid flow and heat transfer inside the heat sinks. According to the inlet/outlet port arrangement, six types of MCHS, namely I-, D-, N-, S-, U-, and V-type MCHS, are investigated in this study. All the geometric dimensions of these six types of heat sink are the same except the inlet/outlet arrangements. Channel with aspect ratio of 2 and 0.5 are investigated in this study. Because of the difference of inlet/outlet arrangements, the resultant flow fields and temperature distributions inside these heat sinks are also different under a given pressure drop across the heat sink and a given channel aspect ratio. Using the averaged velocities and fluid temperatures in each channel to quantify the mald-distribution of fluid flow and temperature, it is found that better uniformities in velocity and temperature can be found in the D-, U-, and V-types of MCHS for both channel aspect ratios studied. Using the thermal resistance and overall heat transfer coefficient to quantify the heat sink performance, it is found that the V-type heat sink has the best performance among the heat sinks studied. It is also found that better heat sink performance can be obtained for higher channel aspect ratio and pressure drop across the MCHS.
URI: http://hdl.handle.net/11455/1685
其他識別: U0005-2407200609072500
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.