Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16876
DC FieldValueLanguage
dc.contributorChi-Chang Huen_US
dc.contributor胡啟章zh_TW
dc.contributorShu-Hua Chengen_US
dc.contributorChi-Chung Chouen_US
dc.contributorSun-Chia Liangen_US
dc.contributor鄭淑華zh_TW
dc.contributor周濟眾zh_TW
dc.contributor孫嘉良zh_TW
dc.contributor.advisor曾志明zh_TW
dc.contributor.advisorJyh-Myng Zenen_US
dc.contributor.author周志宏zh_TW
dc.contributor.authorChou, Chih-Hungen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:56:34Z-
dc.date.available2014-06-06T06:56:34Z-
dc.identifierU0005-1708201122355800zh_TW
dc.identifier.citationChap1 [1] J. Janata, Principles of Chemical Sensors, Plenum: New York, 1989. [2] D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Analytical Chemistry: An Introduction, 7th ed.; Harcourt: Orlando, 2000. [3] A. J. Bard, L. R. Faulkner, Electrochemical Methods, 2nd ed.Wiley: New York, 2001. [4] S. Joo, R. B. Brown, Chem. Rev. 108, 2008, 638. [5] W. H. Brattain, J. Bardeen, Bell Syst. Tech. J. 32, 1953, 1. [6] G. Heiland, D. Kohl, Chemical sensor Technology 1, 1988, 15. [7] G. Sberveglieri, Sens. Actuators B 23, 1995, 103. [8] L. Clark, R. Wolf, D. Granger, Z. Taylor, J. Appl. Physiol. 6, 1953, [9] D. Sawyer, R. S. George, R. C. Rhodes, Anal. Chem. 31, 1959, 2-5. [10] R. Knake, P. Jacquinot, A. W. E. Hodgson, P. C. Houser, Anal. Chim.Acta 549, 2005, 1. [11] M. Wienecke, M. C. Bunescu, M. Pietrzak, K. Deistung, P. Fedtke,Synth. Met. 138, 2003, 165. [12] L. W. Niedrach, H. R. Alford, Chem. Abstr. 62, 1965, 11416c. [13] J. R. Stetter, J. Li, Chem Rev. 108, 2008, 352. [14] A. A. Schieider, U.S. Patent 4,184,937, 1978 [15] K. C. Ho, W. T. Hung, Sens. Actuators B 79, 2001,11. [16] X. K. Xing, C. C. Liu, Electroanalysis 3, 1991, 111. [17] H. Yan, C. C. Liu, Sens. Actuators B 17, 1994, 165. [18] J. S. Do, R. Y. Shieh, Sens. Actuators B 37, 1996, 19. [19] J. S. Do, W. B. Chang, Sens. Actuators B 72, 2001, 101. [20] G. Schiavon, G. Zotti, R. Toniolo, G. Bontempelli, Anal. Chem. 67,1995, 318. [21] G. Schiavon, G. Zotti, R. Toniolo, G. Bontempelli, Analyst 116,1991, 797. [22] B. J. Hwang, Y. C. Liu, W. C. Hsu, J. Solid State Electrochem. 2,1998, 378. [23] M. J. Tierney, H. O. L. Kim, Anal. Chem. 65, 1993, 3435. [24] H. McPeak, C. E. W. Hahn, J. Electroanal. Chem. 427, 1997, 179. [25] G. Schiavon, G. Zotti, G. Bontempelli, G. Farnia, G. Sandon´a, Anal.Chem. 62, 1990, 293. [26] Y. Yang, C. C. Liu, Sens. Actuators B 62, 2000, 30. [27] N. Miura, M. Ono, K. Shimanoe, N. Yamazoe, J. Appl. Electrochem.28, 1998, 863. [28] N. Miura, M. Ono, K. Shimanzoe, N. Yamazoe, Sens. Actuators B 49, 1998, 101. [29] J.-S. Lee, J.-H. Lee, S.-H. Hong, Sens. Actuators B 89, 2003,311. [30] C. G. Zoski, Electroanalysis 14, 2002, 1041. [31] V. Komanicky, W. R. Fawcett, Electrochim. Acta 49, 2004, 1185. [32] J. J. Watkins, B. Zhang, H.S. White, J. Chem. Ed. 82, 2005, 712. [33] J. B. Cooper, A. M. Bond, K. B. Oldham, J. Electroanal. Chem. 331, 1992,877. [34] K. R. Wehmeyer, M. R. Deakin, R. M. Wightman, Anal. Chem. 57, 1985,1913. [35] A. L. Colley, C. G. Williams, U. D''H. Johansson, M. E. Newton, P. R.Unwin, N. R. Wilson, J. V. Macpherson, Anal. Chem. 2006, 78, 2539. [36] V. Komanicky, W. R. Fawcett, Electrochim. Acta 49, 2004, 1185. [37] D. T. Miles, A. Knedlik, D. O. Wipf, Anal. Chem. 69, 1997, 1240. [38] J.-L. Chang, J.-M. Zen, Electrochem. Commun. 8, 2006, 571. [39] F. Robert, Science 315, 2007, 172 [40] M. E. Joanne, P. B. Peter, N. B. Philip, S. A. George, Langmuir 15, 1999,7411. [41] B. Gollas, J. M. Elliott, P. N. Bartlett, Electrochim. Acta 45, 2000, 3711. [42] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A.Lucas, N. M. Markovic, Science 26, 2007, 493. Chap3 [1] H. J. Vreman, D. K. Stevenson, W. Oh, A. A. Fanaroff, L. L. Wright, J. A.Lemons, E. Wright, S. Shankaran, J. E. Tyson, S. B. Korones, C. R. Mauer, B. J. Stoll, L.-A. Papile, E. F. Donovan, R. A. Ehrenkranz, Clin. Chem. 1994, 40, 1927. [2] A. P. Lee, B. J. Reedy, Sen. Actuators B 60, 1999, 35. [3] T. Otagawa, M. Madou, S. Wing, J. R. Alexander, S. Kusanagi, T. Fujioka,A. Yasuda, Sen. Actuators B 1, 1990, 319. [4] Y. H. Tse, P. Janda, H. Lam, A. B. P. Lever, Anal. Chem. 67, 1995, 981. [5] S. A. O'Reilly, S. Daunert, L. G. Bachas, Anal. Chem. 63, 1991, 1278. [6] Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, J. Phys. Chem. B 101,1997, 7075. [7] P. D. van der Wal, N. F. de Rooij, M. Koudelka-Hep, Sen. Actuators B 35,1996, 119. [8] A. Yasuda, N. Yamaga, K. Doi, T. Fujioka, S. Kusanagi, J. Electrochem.Soc. 139, 1992, 1091. [9] H. Muraki, S. Matunaga, H. Shinjoh, M. S. Wainwright, D. L. Trimm, J.Chem. Tech. Biotechnol. 52, 1991, 415. [10] S. A. Bilmes, A. J. Arvia, J. Electroanal. Chem. 361, 1993, 159. [11] R. J. Mortimer, A. Beech, Electrochim. Acta 47, 2002, 3383. [12] S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong 76, 2004, 1083. [13] A. Harriman, G. R. Millward, P. Neta, M. C. Richoux, J. M. Thomas, J. Phys. Chem. 92, 1998, 1286. [14] A. M. Feltham, M. Spiro, Chem. Rev. 71, 1971, 177. [15] O. Ginstrup, Acta Chem. Scand. 26, 1972, 1527. [16] B. Gollas, J. M. Elliott, P. N. Bartlett, Electrochimica Acta 45, 2000, 3711. [17] J. L. Cai, D. Pletcher, J. Electroanal. Chem. 149, 1983, 237. [18] K. Shimazu, D. Weisshaar, T. Kuwana, J. Electroanal. Chem. 223, 1987,223. [19] N. Georgolios, D. Jannakoudakis, P. Karabinas, J. Electroanal. Chem. 264,1989, 235. [20] F. Colom, in: A. J. Bard, R. Parsons, J. Jordan (Eds.), Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985, p 339. [21] J.-L. Chang, J.-M. Zen, Electrochem. Commun. 8, 2006, 571. [22] J.-L. Chang, J.-M. Zen, Electrochem. Commun. 9, 2007, 2744. [23] A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York 2001. [24] S.-L. Chen, A. Kucernak, Electrochem. Commun. 4, 2002, 80. [25] S.-L. Chen, A. Kucernak, J. Phys. Chem. B 106, 2002, 9396. [26] S.-L. Chen, A. Kucernak, J. Phys. Chem. B 107, 2003, 8392. [27] S.-L. Chen, A. Kucernak, J. Phys. Chem. B 108, 2004, 13984. [28] J. F. Zhou, Y. B. Zu, A. J. Bard, J. Electroanal. Chem. 491, 2000, 22. [29] X. Xiao, A. J. Bard, J. Am. Chem. Soc. 129, 2007, 9610. [30] M. Chikae, K. Idegami, K. Kerman, N. Nagatani, M. Ishikawa, Y.Takamura, E. Tamiya, Electrochem. Commun. 8, 2006, 1375. Chap4 [1] H. R. Gerberich, G. C. Seaman, Encyclopedia of Chemical Technology, Vol.11, 4th ed., Wiley: New York, 929, 1994. [2] P. Patnaik, Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil and Solid Wastes, CRC Press, 361, 1997. [3] http://www.iarc.fr/ENG/Press_Releases/archives/pr153a.html. [4] http://www.cdc.gov/niosh/ipcsneng/neng0275.html. [5] S. X. Huang, H. W. Qin, P. Song, X. Liu, L. Li, R. Zhang, J. F. Hu, H. D. Yan, M. H. Jiang, J.Mater. Sci. 42, 2007, 9973. [6] K. W. Zhou, X. L. Ji, N. Zhang, X. R. Zhang, Sens. Actuators B 119, 2006,392. [7] T. Chen, Q. J. Liu, Z. L. Zhou, Y. D. Wang, Sens. Actuators B 131, 2008,301. [8] J. A. Dirksen, K. Duval, T. A. Ring, Sens. Actuators B 80, 2001, 106. [9] C.-Y. Lee, C.-M. Chiang, Y.-H. Wang, R.-H. Ma, Sens. Actuators B 122,2007, 503. [10] P. Lv, Z.A. Tang, J. Yu, F.T. Zhang, G.F. Wei, Z.X. Huang, Y. Hu, Sens.Actuators B 132, 2008, 74. [11] Y. Suzuki, N. Nakano, K. Suzuki, Environ. Sci. Techno. 37, 2003, 5695. [12] K. Kawamura, K. Kerman, M. Fujihara, N. Nagatani, T. Hashiba, E.Tamiya, Sens. Actuators B 105, 2005, 495. [13] S. Achmann, M. Hammerle, R. Moos, Electroanalysis 20, 2008, 410. [14] S. Achmann, M. Hermann, F. Hilbrig, V. Jerome, M. Hammerle, R. Freitag,R. Moos, Talanta 75, 2008, 786. [15] R. Knake, P. Jacquinot, A. W. E. Hodgson, P. C. Hauser, Anal. Chim. Acta.549, 2005, 1. [16] J.-L. Chang, J.-M. Zen, Electrochem. Commun. 8, 2006, 571. [17] J.-L. Chang, J.-M. Zen, Electrochem. Commun. 9, 2007, 2744. [18] C.-H. Chou, J.-L. Chang, J.-M. Zen, Electroanalysis 21, 2009, 206. [19] C. Rice, S. Ha, R. I. Masel, A. Wieckowski, J. Power Sources 115, 2003, 229. [20] A. Capon, R. Parsons, J. Electroanal. Chem. 44, 1973, 239. [21] A. Capon, R. Parsons, J. Electroanal. Chem. 45, 1973, 205. [22] V. Selvaraj, A. N. Grace, M. Alagar, J. Colloid Interface Sci. 333, 2009, 254. [23] J. Jiang, A. Kucernak, J. Electroanal. Chem. 520, 2002, 64. [24] Z. Wang, K. Qiu, Electrochem. Commun. 8, 2006, 1075. [25] S. Daniele, S. Bergamin, Electrochem. Commun. 9, 2007, 1388. [26] S. Dong, P. K. Dasgupta, Environ. Sci. Techno. 20, 1986, 637. [27] E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruna, J. Am.Chem. Soc. 126, 2004, 4043. [28] S. Kang, J. Lee, J. K. Lee, S. Y. Chung, Y. Tak, J. Phys. Chem. B 110, 2006,7270. [29] C. C. Hu, K. Y. Liu, Electrochim. Acta 44, 1999, 2727. [30] C. C. Hu, K. Y. Liu, Electrochim. Acta 45, 2000, 3063. [31] G. Samjeske, A. Miki, M. Osawa, J. Phys. Chem. C 111, 2007, 15074. [32] L. Gorton, E. Dominguez, in Encyclopedia of Electrochemistry, Vol. 9, Eds: A.J. Bard, M. Stratmann, G.S. Wilson, Wiley-VCH, 2002, 67-143. [33] R. Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, Version 3, 1999 www.henrys-law.org. [34] M. G. Burnett, Anal. Chem. 35, 1963, 1567. Chap5 [1] J.-L., Chang, J.-M., Zen, Electrochem. Commun. 8, 2006, 571. [2] M.-H., Chiu, W.-L., Cheng, G., Muthuraman, C.-T., Hsu, H.-H., Chung, J.-M. Zen, Biosens. Bioelectron. 24, 2009, 3008. [3] S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, G.Denuault, Anal. Chem. 74, 2002, 1322. [4] L. J. Thénard, Annales de chimie et de physique, 1818, 2nd series 8: 306-312. [5] http://www.cdc.gov/NIOSH/National Institute for Occupational Safety and Health [6] http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table= standards&p_ id=9992 [7] V. A. Philov(ed.) Harmful Chemical Compounds, Khimiya, Leningrad,1988, 17 [8] J. Kulys, Sens. Actuators B 9, 1992, 143. [9] J. H. Lee, I. N. Tang, Environ. Sci. Technol. 28, 1994, 1180 [10] X. Shu, Y. Chen, H. Yuan, S. Gao, D. Xiao, Anal. Chem. 79, 2007, 3695. [11] K.-Othmer -Encyclopedia of chemical technology, 1981, Wiley:New York;vol. 13,12. [12] L. R. Renata, F. Portugal, O. L. Karina, F. F. Orlando, Anal. Lett. 38, 2005,1857. [13] P. Karam, L. I. Halaoui, Anal. Chem. 80, 2008, 5441. [14] N. V. Kiassen, D. Marchington, H. C. E. McGowant, Anal. Chem. 66,1994, 2921. [15] C. Matsubara, K. Kudo, T. Kawashita, K. Takamura, Anal. Chem. 57,1985, 1107. [16] N. Jie, J. Yang, X. Huang, R. Zhang, Z. Song, Talanta 42, 1995, 1575. [17] K. Wang, W. H. Glaze, J. Chromatogr. A 882, 1998, 207-213 [18] U. Pinkernell, S. Effkemann, U. Karst, Anal. Chem. 69, 1997, 3623. [19] P. G. Osborne, K. Yamamoto, J. Chromatogr. B 707, 1998, 3. [20] J. E. Harrar, Anal. Chem. 35, 1963, 893. [21] E. Schöne, Ber. Dtsch. Chem. Ges. 7, 1874, 1693. [22] J. Liu, S. M. Steinberg , B. J. Johnson, Chemosphere 52, 2003, 815 [23] A. L. Lazrus, G. L. Kok, J. A. Lind, S. N. Gitlin, B. G. Heikes, R. E.Shetter, Anal. Chem. 58, 1986, 594. [24] J. H. Lee, I. N. Tang, J. B. Weinstein-Lloyd, E. B. Halper, Environ. Sci.Technol. 28, 1994, 1180. [25] F. Saur, S. Limbach, G. K. Moortgat, Atmos. Environ. 31, 1997, 1173. [26] P. K. Dasgupta, S. Dong, H. Hwang, H. C. Yang, Z. Genfa, Atmos.Environ. 22, 1988, 949. [27] B. G. Heikes, Atmos. Environ. 18, 1984, 1433. [28] Y. Komazaki, T. Inoue, S. Tanaka, Analyst 126, 2001, 587. [29] T. E. Kleindienst, P. B. Shepson, D. N. Hodges, C. M. Nero, Environ. Sci.Technol. 22, 1988, 53. [30] A. L. Lamus,. G. L. Kok, J. A. Lind, S. N. Gitlin, B. G. Heikes, R. E.Shetter, Anal. Chem. 58, 1986, 594. [31] K. Schachl, H. Alemu, K. Kalcher, J. Jezkova, I. Svancara, K. Vytras,Analyst 122, 1997, 985. [32] J. Wang, N. Naser, L. Angnes, H. Wu, L. Chen, Anal. Chem. 64, 1992,1285. [33] J.-M. Zen, H.-H. Chung, A. S. Kumar, Analyst 125(9), 2000, 1633. [34] L. Gorton, T. Svensson, J. Mol. Catal. 38, 1996, 49. [35] S. Chakraborty, C. R. Raj, Biosens. Bioelectron. 24, 2009, 3264. [36] S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlet, P. J. Doyle, G.Denuault, Anal. Chem. 74, 2002, 1322. [37] M. E. Sandison, N. Anicet, A. Glidle, J. M. Cooper, Anal. Chem. 74, 2002,5717. [38] R. M. Penner, C. R. Martin, Anal. Chem. 59, 1987, 2625. [39] W. Cheng, S. Dong, E. Wang, Anal. Chem. 74, 2002, 3599. [40] A. M. Azevedo, D. M. F. Prazeres, J. M.S. Cabral, L. P. Fonseca., Biosens.Bioelectron. 21, 2005, 235. [41] M. Esti, V. Giulia, D. Compagnone, G. Mariotti, D. Moscone, G.Palleschi, Am. J. Enol. Viticulture 54, 2003, 39. [42] D. G. McCarver-May, L. Durisin, J. Anal. Toxicol. 21(2), 1997, 134. [43] T. Yarita, R. Nakajima, S. Otsuka, T. Ihara, A. Takatsu, M. Shibukawa, J.Chromatogr. A 976 (1-2), 2002, 387. [44] L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, J. C. Rubim, Anal. Chim.Acta 493 (2), 2003, 219. [45] I. L. Mattos, R. P. Sartini, E. A. G. Zagatto, B. F. Reis, Anal. Sci. 14, 1998,1005. [46] J. Vonck, E. F. van Bruggen, Biochim. Biophys. Acta 1038 (1), 1990,74. [47] L. C. Clark, C. Lyons, Ann. NY Acad. Sci. 102 (1), 1962, 29. [48] B. H. Simon, A. K. Emad, L. H. Alan, Elecrochim. Acta. 43, 1998, 579. [49] Y. Mukouyama, S. Nakanishi, H. Konishi, Y. Nakato, J. Electroanal.Chem. 473, 1999, 156. [50] H. Hwang, P. K. Dasgupta, Environ. Sci. Technol. 19, 1985, 255. [51] G. Zhang, P. K. Dasgupta, Anal. Chim. Acta 260, 1992, 57. [52] H. Huang, P. K. Dasgupta, Z. Genfa, Anal. Chem. 68, 1996, 2062. Chap6 [1] M. K. Min, J. Cho, K. Cho, H. Kim, Electrochim. Acta 45, 2000, 4211. [2] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, Science 315, 2007, 220. [3] S. Zhou, G. S. Jackson, B. Eichhorn, Adv. Funct. Mater. 17, 2007, 3099. [4] T. B. Massalski, J. L. Murray, L. H. Bennett, H. Baker, Binary Alloy Diagram, 1, 1986. [5] S. Marc, P. Sebastian, M. Yu, K. Rhett, M. Nobuyoshi, B. Matthias, Adv.Mater. 20, 2008, 1928. [6] B. Lim, J. Wang, P. H. C. Camargo, C. M. Cobley, M. J. Kim, Y. Xia,Angew. Chem. 121, 2009, 6422. [7] B. Ballarin, M. Gazzano, D. Tonelli, Electrochi. Acta 55, 2010, 6789. [8] S. Thiagarajan, S. M. Chen, Talanta, 74, 2007, 212. [9] X. Shen, X. Chen, J. H. Liu, X. J. Huang, J. Mater. Chem. 19, 2009, 7687. [10] X. Guo, D. J. Guo, X. P. Qiu, L. Q. Chen, W. T. Zhu, Electrochem.Commun. 10, 2008, 1748. [11] S. Zhang, Y. Shao, G. Yina, Y. Linb, J. Power Sources 195, 2010, 1103. [12] H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H.D. Abruna, F. J.DiSalvo, J. Am. Chem. Soc. 130, 2008, 5452. [13] W. Chen, J. Kim, S. H. Sun, S. W. Chen, Phys. Chem. Chem. Phys. 8, 2006,2779. [14] Y. Y. Yang, S. G. Sun, Y. J. Gu, Z. Y. Zhou, C. H. Zhen, Electrochim. Acta 46, 2001, 4339. [15] S. Uhm, H. J. Lee, Y. Kwon, J. Lee, Angew. Chem. Int. Ed. 47, 2008,10163. [16] J. Luo, P. N. Njoki, Y. Lin, D. Mott, L. Wang, C. J. Zhong, Langmuir 22,2006, 2892. [17] S. B. Aoun, Z. Dursun, T. Koga, G. S. Bang, T. Sotomura, I. Taniguchi, J.Electroanal. Chem. 567, 2004, 175. [18] A. B. Anderson, Je´roˆme Roques, J. Phys. Chem. B 109, 2005, 1198. [19] S. Thiagarajan, S. M. Chen, J. Solid State Electrochem. 13, 2009, 445. Chap7 [1] J.-M. Zen, C.-T. Hsu, A. S. Kumar, H.-J. Lyuu, K.-Y. Lin, Analyst 129(9),2004, 841. [2] C.-C. Yang, A. S. Kumar, M.-C. Kuo, S.-H. Chien, J.-M. Zen, Anal. Chim. Acta 554, 2005, 66.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16876-
dc.description.abstract本論文以網版印刷超微電極為工作平台,利用簡單快速之電化學還原法製作奈米催化材料以發展感測器。超微電極特有之邊緣擴散效應不僅有利於電化學還原反應中金屬粒子均勻分散,更因為低背景電流而有助於電化學分析應用。此外Nafion的角色為固態電解質、高吸濕性之氣體穿透薄膜進而幫助三電極之電子傳導與氣體分子傳達至電極表面。因此結合此三項重要元素,本研究成功製作出分散均勻、粒徑均一之高催化性奈米白金粒子超微電極,並且成功開發以奈米白金超微電極為工作平台之一氧化碳、甲醛及雙氧水之氣體感測器。依據此三種分析物之化學特性證明奈米白金超微電極之氣體感測器的應用廣泛。本論文實驗部分含有四個章節,第一部份是奈米白金超微電極偵測一氧化碳氣體,有良好線性且不被一氧化碳毒化,具有高靈敏度與重複性。第二部分為甲醛偵測實驗,利用逆向方波伏安法成功解決白金還原與甲酸氧化訊號重疊,進而增加奈米白金超微電極偵測甲醛之靈敏度與選擇性。第三部分為偵測氣態雙氧水,奈米白金對雙氧水有優異之氧化力,因此達到6個等級之線性範圍。此外利用化學特性差異達到高選擇性偵測氣態雙氧水,此氣體雙氧水具有良好穩定性與再現性。最後成功利用酒精氧化酵素以延伸發展乙醇感測器,可成功偵測酒類飲料之酒精含量。第四部份是製作奈米雙金屬超微電極,簡單快速修飾奈米雙金屬於超微電極表面。此材料對葡萄糖及氧氣具有優越之催化能力,以利未來發展生物燃料電池及感測器。zh_TW
dc.description.abstractIn this research, we develop versatile sensors based on electrodeposition of catalytic metal nanoparticles (e.g., Pt and Au) on a screen-printed edge band ultramicroelectrode (SPUME) with Nafion as the solid polymer electrolyte. On designing a specific gas sensor, we use screen printing technology to mass produce carbon edge band ultramicroelectrode, which is well developed by our group. The edge diffusion effect at the SPUME, stabilizing the generation rate of hydrogen and accelerating the mass transfer of Pt solution, is believed to play a key role on achieving the nanoparticles deposition with homogeneous size and distribution. By using the NPt-SPUME, we successfully develop carbon monoxide, formaldehyde, and hydrogen peroxide gas sensors. As to the disposable CO gas sensor, the linear range is up to 1000 ppm with correlation coefficient and sensitivity of 0.994 and 3.76 nA/(ppm‧cm2), respectively. To develop the formaldehyde gas sensor, the employment of reverse square wave voltammetry (SWV) is essential for high sensitivity. The formaldehyde oxidation mechanism is similar to the formic acid fuel cell study and thus the overlapped responses from the reduction of platinum oxide and the oxidation of formic acid are effectively discriminated, resulting in detecting low levels of formaldehyde with high selectivity. We further develop the detection of gaseous hydrogen peroxide at an NPt-SPUME with the help of Nafion membrane. Gaseous H2O2 evaporated from aqueous H2O2 in various concentration is determined in the linear range of 0.5 ppbv - 89.6 ppmv H2O2 (g) (5 uM - 900 mM H2O2 (aq)) with R2 and LOD of 0.9995 and 0.03 ppbv H2O2(g) (0.35 uM H2O2(aq)) (S/N = 3). Selective analysis of H2O2 in high dose (2 mM) of interferences such as methanol, ethanol, acetaldehyde, ascorbic acid, dopamine and uric acid is well proved by employing our method. Real sample analysis results in recoveries within 97.2 %−102.1% for 7 different samples. Additionally, the direct gaseous H2O2 signals are linearly proportional to ethanol concentration in the range of 5.2 uM-4.9 mM (R2 = 0.9997), showing a detection limit of 0.26 uM (S/N = 3). This method overcomes the limitation of previous amperometric hydrogen peroxide sensors bringing outstanding qualitative and quantitative results. We also successfully fabricate a bimetallic nano-AuPt material on SPUME, which have good electroactivity for oxidation of glucose in neutral medium and reduction of oxygen.en_US
dc.description.tableofcontents謝誌 i 中文摘要 ii 英文摘要 iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 序論 1 1-1 研究背景 1 1-2 電化學氣體感測器的發展 1 1-3 網版印刷超微電極 5 1-4 奈米白金特性 6 1-5 電化學方法 8 1-6 研究目標 10 1-7 參考文獻 11 第二章 儀器與藥品 14 2-1 儀器設備 14 2-2 藥品目錄 14 2-3 氣體感測器裝置 16 第三章 奈米白金修飾網版印刷超微電極偵測一氧化碳 18 3-1 研究背景介紹 18 3-1-1 偵測一氧化碳的重要性 18 3-1-2 奈米白金製備 19 3-1-2-1 化學還原法 19 3-1-2-2 電化學還原法(電鍍過程) 19 3-1-3 研究目標 20 3-2 實驗內容 21 3-3 結果與討論 23 3-3-1 電化學還原法 23 3-3-2 電化學分析 28 3-4 結論 32 3-5 參考文獻 33 第四章 甲醛氣體感測器開發 35 4-1 背景介紹 35 4-2 甲醛電化學反應機制 36 4-3 結果與討論 38 4-3-1 奈米白金超微電極對甲醛之電化學行為 38 4-3-2 反應機制 39 4-3-3 偵測方法 42 4-4 結論 48 4-5 參考文獻 49 第五章 奈米白金修飾網版印刷超微電極偵測氣體雙氧水及其應用 52 5-1 研究背景 52 5-1-1 雙氧水的重要性 52 5-1-2 文獻回顧 53 5-1-2-1 偵測液態雙氧水 53 5-1-2-2 氣態雙氧水的偵測 54 5-1-2-3 電化學方法偵測雙氧水 54 5-1-3 應用於偵測乙醇 55 5-3 結果與討論 56 5-3-1 奈米白金修飾超微電極偵測雙氧水 56 5-3-1-1 白金偵測雙氧水之電化學反應機制 56 5-3-1-2 雙氧水之循環伏安行為 57 5-3-1-3 雙氧水之熱力學特性 59 5-3-1-4 偵測液相雙氧水 59 5-3-1-5 及時偵測氣態雙氧水 62 5-3-1-6 選擇性與校正曲線 64 5-3-1-7 重複性、再現性與長效性 66 5-3-1-8 真實樣品測試 67 5-3-2 氣態雙氧水感測器應用於乙醇分析 70 5-3-2-1 偵測方法 70 5-3-2-2 乙醇感測器參數最佳化 71 5-3-2-3 線性與重複性 74 5-3-2-4 真實樣品 76 5-4 結論 78 5-5 參考文獻 79 第六章 奈米雙金屬修飾超微電極之製作與應用 83 6-1 背景介紹 83 6-1-1 雙金屬(Bimetal) 83 6-1-2 研究目標 84 6-2 實驗內容 85 6-3 結果與討論 86 6-3-1 共沉積 86 6-3-1-1 SEM與EDX 86 6-3-1-2 ESCA 87 6-3-1-3 電化學行為 88 6-3-1-4 葡萄糖測試 89 6-3-2 雙陣列金屬(dual array) 91 6-3-2-1 製作概念 91 6-3-2-2 SEM-Au-Pt 91 6-3-2-3 雙陣列金屬之電化學行為 92 6-3-2-4 葡萄糖測試 93 6-3-2-5 氧還原測試 94 6-4 結論 96 6-5 參考文獻 97 第七章 未來展望 99 7-1 奈米金 99 7-2 銅與銅–金 101 7-3 銅–鈀 103 7-4 參考文獻 105zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201122355800en_US
dc.subjectScreen-printed edge band carbon ultramicroelectrodeen_US
dc.subject網版印刷超微電極zh_TW
dc.subjectsensoren_US
dc.subjectnano-particleen_US
dc.subject感測器zh_TW
dc.subject奈米顆粒zh_TW
dc.title超微電極化學感測器的研發與製作zh_TW
dc.titleFabrication of sensors based on metal nanoparticle-deposited screen-printed edge band carbon ultramicroelectrodesen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
Appears in Collections:化學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.