Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16898
標題: 新合成方法之研究: (一)α-胺基酸的不對稱合成:(1S)-(+)-3-蒈烯衍生之三環亞胺基內酯的合成及其應用 (二)醛類化合物的製備:開發以2-碘醯基苯甲酸氧化一級醇之實用方法
The Studies on New Synthetic Methodologies: 1. Asymmetric Synthesis of α-Methyl-α-Amino Acids via Diastereoselective Alkylation of (1S)-(+)-3-Carene-derived Tricyclic Iminolactone 2. A Simple Method for the Oxidation of Primary Alcohols with 2-Iodoxybenzoic Acid (IBX) in the Presence of Acetic Acid
作者: 林正坤
Lin, Cheng-Kun
關鍵字: α-Amino acids;不對稱合成;Asymmetric synthesis;3-Carene;Iminolactone;Aldehydes;2-Iodoxybenzoic acid;Oxidation;Primary alcohols;3-蒈烯;亞胺基內酯;醛類;2-碘醯基苯甲酸;氧化;一級醇
出版社: 化學系所
引用: 1. Corey, E. J., Helal, C. J. "Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: A new paradigm forenantioselective catalysis and a powerful new synthetic method" Angew. Chem. Int. Ed. 1998, 37, 1986–2012. 2. Kelly, T. A.; Jeanfavre, D. D.; McNeil, D. W.; Woska, J. R., Jr.; Reilly, P. L.; Mainolfi, E. A.; Kishimoto, K. M.; Nabozny, G. H.; Zinter, R.; Bormann, B.-J.; Rothlein, R. "Cutting edge: A small molecule antagonist of LFA-1-mediated cell adhesion" J. Immunol. 1999, 163, 5173–5177. 3. (a) Kano, T.; Sakamoto, R.; Mii, H.; Wang, Y. G.; Maruoka, K. "Catalytic asymmetric synthesis of cyclic α-alkyl-amino acid derivatives by C,N-double alkylation" Tetrahedron 2010, 66, 4900–4904. (b) Balducci, D.; Lazzari, I.; Monari, M.; Piccinelli, F.; Porzi, G. "(S)-α-Methyl, α-amino acids: a new stereocontrolled synthesis" Amino Acids 2010, 38, 829–837. (c) Martelli, G.; Orena, M.; Rinaldi, S.; Sabatino, P. "Diastereoselective functionalisation of Baylis-Hillman adducts: A convenient approach to α-methyl-α-amino acids" Amino Acids 2010, 39, 489–497. (d) Soloshonok, V. A.; Sorochinsky, A. E. "Practical methods for the synthesis of symmetrically α,α-disubstituted α-amino acids" Synthesis 2010, 2319–2344. (e) Alba, A. N. R.; Companyó, X.; Valero, G.; Moyano, A.; Rios, R. "Enantioselective organocatalytic addition of oxazolones to 1,1-bis(phenylsulfonyl)ethylene: A convenient asymmetric synthesis of quaternary α-amino acids" Chem. Eur. J. 2010, 16, 5354–5361. (f) Kirira, P. G.; Kuriyama, M.; Onomura, O. "Electrochemical deallylation of α-allyl cyclic amines and synthesis of optically active quaternary cyclic amino acids" Chem. Eur. J. 2010, 16, 3970–3982. (g) Branca, M.; Pena, S.; Guillot, R.; Gori, D.; Alezra, V.; Kouklovsky, C. "Memory of chirality of tertiary aromatic amides: A simple and efficient method for the enantioselective synthesis of quaternary α-amino acids" J. Am. Chem. Soc. 2009, 131, 10711–10718. (h) Green, J. E.; Bender, D. M.; Jackson, S.; O''Donnell, M. J.; McCarthy, J. R. "Mitsunobu approach to the synthesis of optically active α,α-disubstituted amino acids" Org. Lett. 2009, 11, 807–810. (i) Wang, Y. G.; Mii, H.; Kano, T.; Maruoka, K. "Catalytic asymmetric synthesis of cyclic α-alkyl-amino acid derivatives having a tetrasubstituted α-carbon" Bioorg. Med. Chem. Lett. 2009, 19, 3795–3797. (j) Cativiela, C.; Ordóñez, M. "Recent progress on the stereoselective synthesis of cyclic quaternary α-amino acids" Tetrahedron: Asymmetry 2009, 20, 1–63. (k) Dickstein, J. S.; Fennie, M. W.; Norman, A. L.; Paulose, B. J.; Kozlowski, M. C. "Three component coupling of α-iminoesters via umpolung addition of organometals: Synthesis of α,α-disubstituted α-amino acids" J. Am. Chem. Soc. 2008, 130, 15794–15795. (l) Cabrera, S.; Reyes, E.; Alemán, J.; Milelli, A.; Kobbelgaard, S.; Jørgensen, K. A. "Organocatalytic asymmetric synthesis of α,α-disubstituted α-amino acids and derivatives" J. Am. Chem. Soc. 2008, 130, 12031–12037. (m) Mosey, R. A.; Fisk, J. S.; Tepe, J. J. "Stereoselective syntheses of quaternary substituted α-amino acids using oxazol-5-(4H)-ones" Tetrahedron: Asymmetry 2008, 19, 2755–2762. (n) Di Giacomo, M.; Vinci, V.; Serra, M.; Colombo, L. "New fast and practical method for the enantioselective synthesis of α-vinyl, α-alkyl quaternary α-amino acids" Tetrahedron: Asymmetry 2008, 19, 247–257. (o) Cativiela, C.; Díaz-De-Villegas, M. D. "Recent progress on the stereoselective synthesis of acyclic quaternary α-amino acids" Tetrahedron: Asymmetry 2007, 18, 569–623. (p) Nájera, C.; Sansano, J. M. "Catalytic asymmetric synthesis of α-amino acids" Chem. Rev. 2007, 107, 4584–4671. (q) Ohfune, Y.; Shinada, T. "Enantio- and diastereoselective construction of α,α-disubstituted α-amino acids for the synthesis of biologically active compounds" Eur. J. Org. Chem. 2005, 5127–5143. (r) Ding, K.; Ma, D. W. "Asymmetric synthesis of α,α-disubstituted amino acids by diastereoselective functionalization of enantiopure phenyloxazinones, derivatives of asymmetric Strecker reaction products of aldehydes" Tetrahedron 2001, 57, 6361–6366, and references cited therein. 4. (a) Hsieh, K.-H.; Marshall, G. R. "Role of the C-terminal carboxylate in angiotensin II activity: alcohol, ketone, and ester analogs of angiotensin II" J. Med. Chem. 1986, 29, 1968–1971. (b) Samanen, J.; Narindray, D.; Adams, Jr., W.; Cash, T.; Yellin, T.; Regoli, D. "Effects of D-amino acid substitution on antagonist activities of angiotensin II analogs" J. Med. Chem. 1988, 31, 510–516. (c) Blommaert, A. G. S.; Dhôtel, H.; Ducos, B.; Durieux, C.; Goudreau, N.; Bado, A.; Garbay, C.; Roques, B. P. "Structure-based design of new constrained cyclic agonists of the aholecystokinin CCK-B receptor" J. Med. Chem. 1997, 40, 647–658. 5. Heimgartner, H. "3-Amino-2H-azirines. Synthons for α,α-disubstituted α-amino acids in heterocycle and peptide synthesis" Angew. Chem. Int. Ed. 1991. 30, 238–264. 6. (a) Reinhold, D. F.; Firestone, R. A.; Gaines, W. A.; Chemerda, J. M.; Sletzinger, M. "Synthesis of L-α-methyldopa from asymmetric intermediates" J. Org. Chem. 1968, 33, 1209–1213. (b) Saari, W. S.; Freedman, M. B.; Hartman, R. D.; King, S. W.; Raab, A. W.; Randall, W. C.; Engelhardt, E. L.; Hirschmann, R.; Rosegay, A.; Ludden, C. T.; Scriahine, A. "Synthesis and antihypertensive activity of some ester progenitors of methyldopa" J. Med. Chem. 1978, 21, 746–753. 7. Singh, S.; Rao, S. J.; Pennington, M. W. "Efficient asymmetric synthesis of (S)- and (R)-N-Fmoc-S-trityl-α-methylcysteine using camphorsultam as a chiral auxiliary" J. Org. Chem. 2004, 69, 4551–4554. 8. Schirlin, D.; Gerhart, F.; Hornsperger, J. M.; Hamon, M.; Wagner, J.; Jungs, M. J. "Synthesis and biological properties of α-mono- and α-difluoromethyl derivatives of tryptophan and 5-hydroxytryptophan" J. Med. Chem. 1988, 31, 30–36. 9. Kiick, D. M.; Cook, P. F. "pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase" Biochemistry 1983, 22, 375–382. 10. (a) Schiller, P. W.; Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.; Chung, N. N.; Marsden, B. J.; Wilkes, B. C. "Conformational restriction of the phenylalanine residue in a cyclic opioid peptide analog: Effects on receptor selectivity and stereospecificity" J. Med. Chem. 1991, 34, 3125–3132. (b) Toniolo, C.; Formaggio, F.; Crisma, M.; Valle, G.; Boesten, W. H. J.; Schoemaker, H. E.; Kamphuis, J.; Temussi, P. A.; Becker, E. L.; Précigoux, G. "Bioactive and model peptides characterized by the helicogenic (αMe)Phe residue" Tetrahedron 1993, 49, 3641–3653. (c) Déry, O.; Josien, H.; Grassi, J.; Chassaing, G.; Couraud, J. Y.; Lavielle, S. "Use of conformationally constrained peptides for a topographical analysis of the combining site of a monoclonal anti-substance P antibody" Biopolymers 1996, 39, 67–74. (d) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. "Synthesis and biological properties of new constrained CCK-B antagonists: Discrimination of two affinity states of the CCK-B receptor on transfected CHO cells" J. Med. Chem. 1997, 40, 3947–3956. (e) Mossel, E.; Formaggio, F.; Crisma, M.; Toniolo, C.; Broxterman, Q. B.; Boesten, W. H. J.; Kamphuis, J.; Quaedflieg, P. J. L. M.; Temussi, P. "Aspartame dipeptide analogues: Effect of number of side-chain methylene group spacers and Cα-methylation in the second position" Tetrahedron: Asymmetry 1997, 8, 1305–1314. 11. (a) Valle, G.; Crisma, M.; Toniolo, C.; Beisswenger, R.; Rieker, A.; Jung, G. "First observation of a helical peptide containing a chiral residue without a preferred screw sense" J. Am. Chem. Soc. 1989, 111, 6828–6833. (b) Nebel, K.; Altmann, E.; Mutter, M.; Bardi, R.; Piazzesi, A. M.; Crisma, M.; Bonora, G. M.; Toniolo, C. "Structural versatility of peptides from Cα,α-disubstituted glycines: Preferred conformation of the chiral isovaline residue" Biopolymers 1991, 31, 1135–1148. (c) Karle, I. L.; Flippen-Anderson, J. L.; Agarwalla, S.; Balaram, P. "Conformation of the flexible bent helix of Leu-zervamicin in crystal C and a possible gating action for ion passage" Biopolymers 1994, 34, 721–735. 12. Aubry, A.; Bayeul, D.; Précigoux, G.; Pantano, M.; Formaggio, F.; Crisma, M.; Toniolo, C.; Boesten, W. H. J.; Shoemaker, E.; Kamphuis, J. "Position of side-chain branching and handedness of turns and helices of homopeptides from chiral Cα-methylated amino acids. Crystal-state structural analysis of (αMe)Leu trimer and tetramer" J. Chem. Soc., Perkin Trans. 2 1994, 525–529. 13. Valle, G.; Pantano, M.; Formaggio, F.; Crisma, M.; Toniolo, C.; Précigoux, G.; Sulzenbacher, G.; Boesten, W. H. J.; Broxterman, Q. B.; Schoemaker, H. E.; Kamphuis, J. "Structural versatility of peptides from Cα,α-disubstituted glycines: Crystal-state conformational analysis of homopeptides from Cα-methyl, Cα-benzylglycine [(αMe)Phe]n" Biopolymers 1993, 33, 1617–1615. 14. (a) Schöllkopf, U.; Groth, U.; Westphalen, K.-O.; Deng, C. "Asymmetric syntheses via heterocyclic intermediateds; VIII. Entantioselective synthesis of (R)-α-methyl-α-amino acids using L-valine as chiral auxiliary reagent" Synthesis 1981, 969–971. (b) Groth, U.; Schöllkopf, U. "Asymmetric syntheses via heterocyclic intermediateds; XVII. Entantioselective synthesis of (R)- α-methyl-S-benzylcysteine methyl ester using L-valine as chiral auxiliary reagent" Synthesis 1983, 37–38. 15. (a) Seebach, D.; Aebi, J. D.; Naef, R.; Weber, T. "17. α-Alkylation of amino acids without racemization. Preparation of either (S)-or (R)-α-methyldopa from (S)-alanine" Helv. Chim. Acta 1985, 68, 144–154. (b) Seebach, D.; Fadel, A. "138. N,O-Acetals from pivalaldehyde and amino acids for the α-alkylation with self-reproduction of the center of chirality. Enolates of 3-benzoyl-2-(tert-butyl)-1,3-oxazolidin-5-ones" Helv. Chim. Acta 1985, 68, 1243–1250. 16. Williams, R. M.; Im, M.-N. "Asymmetric synthesis of monosubstituted and α,α-disubstituted α-amino acids via diastereoselective glycine enolate alkylations" J. Am. Chem. Soc. 1991, 113, 9276–9286. 17. (a) Chinchilla, R.; Galindo, N.; Nájera, C. "Asymmetric synthesis of (S)-α-methyl α-amino acids by alkylation of chiral 3,6-dihydro-2H-1,4-oxazin-2-ones using unactivated alkyl halides and organic bases" Tetrahedron: Asymmetry 1998, 9, 2769–2772. (b) Chinchilla, R.; Galindo, N.; Nájera, C. "Chiral 3,6-dihydro-2H-1,4-oxazin-2-ones as alanine equivalents for the asymmetric synthesis of α-methyl α-amino acids (AMAAs) under mild reaction conditions" Synthesis 1999, 704–717. (c) Abellán, T.; Nájera, C.; Sansano, J. M. "New chiral alanine template with a 1,2,3,6-tetrahydro-2-pyrazinone structure for the asymmetric synthesis of α-methyl α-amino acids" Tetrahedron: Asymmetry 1998, 9, 2211–2214. (d) Nájera, C.; Abellán, T.; Sansano, J. M. "Asymmetric synthesis of α-methyl α-amino acids through diastereoselective alkylation under mild reaction conditions of an iminic alanine template with a 1,2,3,6-tetrahydro-2-pyrazinone Structure" Eur. J. Org. Chem. 2000, 2809–2820. (e) Abellán, T.; Chinchilla, R.; Galindo, N.; Nájera, C.; Sansano, J. M. "New oxazinone and pyrazinone derivatives as chiral reagents for the asymmetric synthesis of α-amino acids" J. Heterocycl. Chem. 2000, 37, 467–479. 18. Koch, C.-J.; Šimonyiová, S.; Pabel, J.; Kärtner, A.; Polborn, K.; Wanner, K. T. "Asymmetric synthesis with 6-tert-butyl-5-methoxy-6-methyl-3,6-dihydro-2H-1,4-oxazin-2-one as a new chiral glycine equivalent: Preparation of enantiomerically pure α-tertiary and α-quaternary α-amino acids" Eur. J. Org. Chem. 2003, 1244–1263. 19. (a) Carloni, A.; Porzi, G.; Sandri, S. "Stereoselective synthesis of uncommon α,α''-dialkylated-α-aminoacids. Part 1" Tetrahedron: Asymmetry 1998, 9, 2987–2998. (b) Porzi, G.; Sandri, S. "A new stereoselective synthesis of sterically constrained uncommon α,α''-dialkylated α-amino acids. Part 2" Tetrahedron: Asymmetry 1998, 9, 3411–3420. 20. (a) Davies, S. G.; Garner, A. C.; Ouzman, J. V. A.; Roberts, P. M.; Smith, A. D.; Snow, E. J.; Thomson, J. E.; Tamayo, J. A.; Vickers, R. J. "Diastereoselective synthesis of quaternary α-amino acids from diketopiperazine templates" Org. Biomol. Chem. 2007, 5, 2138–2147. (b) Bull, S. D.; Davies, S. G.; Epstein, S. W.; Leech, M. A.; Ouzman, J. V. A. "A chiral relay auxiliary for the synthesis of homochiral α-amino acids" J. Chem. Soc., Perkin Trans. 1, 1998, 2321–2330. (c) Bull, S. D.; Davies, S. G.; Moss, W. O. "Practical synthesis of Schöllkopf''s bis-lactim ether chiral auxiliary: (3S)-3,6-dihydro-2,5-dimethoxy-3-isopropyl-pyrazine" Tetrahedron: Asymmetry 1998, 9, 321–327. 21. 羅世鈞,“α-胺基酸不對稱合成:由α-苹烯與桃金娘帖烯醇製備雙環亞胺基內酯及其烷化反應”,國立中興大學化學系研究所碩士論文 (1990)。 22. 劉湘龍,“α-胺基酸不對稱合成:單環亞胺基內酯之製備”,國立中興大學化學系研究所碩士論文 (1990)。 23. 林正坤,“α-胺基酸不對稱合成-由α-甲基-反式-肉桂醛製備單環亞胺基內酯及其烷化反應”,國立中興大學化學系研究所碩士論文 (2005)。 24. Lu, T.-J.; Lin, C.-K. "Asymmetric synthesis of α-amino acids: Preparation and alkylation of monocyclic iminolactones derived from α-methyl trans-cinnamaldehyde" J. Org. Chem. 2008, 73, 9527–9534. 25. 林淑宜,“利用(1R)-(+)-樟腦製備三環亞胺基內酯並進行烷化反應,以合成α-胺基酸反應之研究;OXONE®,對環狀丙烯醇化合物之氧化反應的研究”,國立中興大學化學系研究所碩士論文 (1993)。 26. Xu, P.-F.; Chen, Y.-S.; Lin, S.-I.; Lu, T.-J. "Chiral tricyclic iminolactone derived from (1R)-(+)-camphor as a glycine equivalent for the asymmetric synthesis of α-amino acids" J. Org. Chem. 2002, 67, 2309–2314. 27. Xu, P.-F.; Lu, T.-J. "Selective synthesis of either enantiomer of α-amino acids by switching the regiochemistry of the tricyclic iminolactones prepared from a single chiral source" J. Org. Chem. 2003, 68, 658–661. 28. Xu, P.-F.; Li, S.; Lu, T.-J.; Wu, C.-C.; Fan, B.; Golfis, G. "Asymmetric synthesis of α,α-disubstituted α-amino acids by diastereoselective alkylation of camphor-based tricyclic iminolactone" J. Org. Chem. 2006, 71, 4364–4373. 29. 鄭昭欣,“由 (1R)-(+)-α-苹烯和 (1R)-(–)-桃金娘萜烯醇所製備的三環亞胺基內酯以合成α-胺基酸”,國立中興大學化學系研究所碩士論文 (1992)。 30. (a) Uraguchi, D.; Asai, Y.; Seto, Y.; Ooi, T. "Asymmetric synthesis of α,α-disubstituted α-amino acids via enantioselective alkylation of azlactones under biphasic conditions using P-Spiro chiral tetraaminophosphonium salts as a phase-transfer catalyst" Synlett 2009, 658–660. (b) Kitamura, M.; Arimura, Y.; Shirakawa, S.; Maruoka, K. "Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of α-alkyl-α-amino acids" Tetrahedron Lett. 2008, 49, 2026–2030. (c) Bozkurt, S.; Durmaz, M.; Yilmaz, M.; Sirit, A. "Calixarene-based chiral phase-transfer catalysts derived from Cinchona alkaloids for enantioselective synthesis of α-amino acids" Tetrahedron: Asymmetry 2008, 19, 618–623. (d) Wang, Y. G.; Ueda, M.; Wang, X. S.; Han, Z. F.; Maruoka, K. "Convenient preparation of chiral phase-transfer catalysts with conformationally fixed biphenyl core for catalytic asymmetric synthesis of α-alkyl- and α,α-dialkyl-α-amino acids: Application to the short asymmetric synthesis of BIRT-377" Tetrahedron 2007, 63, 6042–6050. (e) Lee, J. H.; Yoo, M. S.; Jung, J. H.; Jew, S. S.; Park, H. G.; Jeong, B. S. "Polymeric chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids" Tetrahedron 2007, 63, 7906–7915. (f) Chinchilla, R.; Nájera, C.; Ortega, F. J. "Convenient conditions for the enantioselective synthesis of α-methyl-α-amino acids with the use of Cinchona ammonium salts as phase-transfer organocatalysts" Eur. J. Org. Chem. 2007, 6034–6038. (g) Chinchilla, R.; Nájera, C.; Ortega, F. J. "Improved conditions for the asymmetric synthesis of α-amino acids using Cinchona-derived anthracenylmethyl ammonium salts as chiral phase-transfer organocatalysts" Tetrahedron: Asymmetry 2006, 17, 3423–3429. (h) Park, H. G.; Kim, M. J.; Park, M. K.; Jung, H. J.; Lee, J.; Choi, S. H.; Lee, Y. J.; Jeong, B. S.; Lee, J. H.; Yoo, M. S.; Ku, J. M.; Jew, S. S. "Highly enantioselective phase-transfer catalytic alkylation in the preparation of non-natural α-amino acids via solid phase synthesis using aldimine linker" J. Org. Chem. 2005, 70, 1904–1906. (i) Kitamra, M.; Shirakawa, S.; Maruoka, K. "Powerful chiral phase-transfer catalysts for the asymmetric synthesis of α-alkyl- and α,α,-dialkyl-α-amino acids" Angew. Chem. Int. Ed. 2005, 44, 1549–1551. (j) O''Donnell, M. J. "The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral Schiff base esters" Acc. Chem. Res. 2004, 37, 506–517. (k) Chinchilla, R.; Mazón, P.; Nájera, C. "Polystyrene-anchored Cinchona ammonium salts: Easily recoverable phase-transfer catalysts for the asymmetric synthesis of α-amino acids" Adv. Syn. Catal. 2004, 346, 1186–1194. (l) Maruoka, K.; Ooi, T. "Enantioselective amino acid synthesis by chiral phase-transfer catalysis" Chem. Rev. 2003, 103, 3013–3028. (m) Ooi, T.; Kameda, M.; Maruoka, K. "Design of N-spiro C-2-symmetric chiral quaternary ammonium bromides as novel chiral phase-transfer catalysts: Synthesis and application to practical asymmetric synthesis of α-amino acids" J. Am. Chem. Soc. 2003, 125, 5139–5151. (n) Belokon, Y. N.; Bespalova, N. B.; Churkina, T. D.; Císařová, I.; Ezernitskaya, M. G.; Harutyunyan, S. R.; Hrdina, R.; Kagan, H. B.; Kočovský, P.; Kochetkov, K. A.; Larionov, O. V.; Lyssenko, K. A.; North, M.; Polášek, M.; Peregudov, A. S.; Prisyazhnyuk, V. V.; Vyskočil, Š. "Synthesis of α-amino acids via asymmetric phase transfer-catalyzed alkylation of achiral nickel(II) complexes of glycine-derived Schiff bases" J. Am. Chem. Soc. 2003, 125, 12860–12871. (o) Belokon, Y. N.; Davies, R. G.; North, M. "A practical asymmetric synthesis of α-methyl α-amino acids using a chiral Cu-salen complex as a phase transfer catalyst" Tetrahedron Lett. 2000, 41, 7245–7248. (p) Chinchilla, R.; Falvello, L. R.; Galindo, N.; Nájera, C. "Asymmetric synthesis of α-methyl α-amino acids by diastereoselective alkylation of optically active 6-isopropyl-3-methyl-2,3-dihydro-6H-l,4-oxazin-2-ones" Angew. Chem. Int. Ed. 1997, 36, 965–997, and references cited therein. 31. Corey, E. J.; Suggs, J. W. "Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds" Tetrahedron Lett. 1975, 16, 2647–2650. 32. Corey, E. J.; Schmidt, G. "Useful procedures for the oxidation of alcohols involving pyridinium dichromate in approtic media" Tetrahedron Lett. 1979, 20, 399–402. 33. (a) Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. "13. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols" J. Chem. Soc. 1946, 39–45. (b) Heilbron, S. I.; Jones, E. R. H.; Sondheimer, F. "129. Researches on acetylenic compounds. Part XV. The oxidation of primary acetylenic carbinols and glycols" J. Chem. Soc. 1949, 604–607. 34. (a) Collins, J. C.; Hess, W. W.; Frank, F. J. "Dipyridine-chromium(VI) oxide oxidation of alcohols in dichloromethane" Tetrahedron Lett. 1968, 9, 3363–3366. (b) Collins, J. C.; Hess, W. W. "Aldehydes from primary alcohols by oxidation with chromium trioxide: Heptanal" Org. Synth. 1972, 52, 5–9. 35. Pfitzner, K. E.; Moffatt, J. G. "A new and selective oxidation of alcohols" J. Am. Chem. Soc. 1963, 85, 3027–3028. 36. Parikh, J. R.; Doering, W. v. E. "Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide" J. Am. Chem. Soc. 1967, 89, 5505–5507. 37. Corey, E. J.; Kim, C. U. "New and highly effective method for the oxidation of primary and secondary alcohols to carbonyl compounds" J. Am. Chem. Soc. 1972, 94, 7586–7587. 38. (a) Wirth, T.; H., Hirt. U. "Hypervalent iodine compounds: Recent advances in synthetic applications" Synthesis 1999, 1271–1287. (b) Zhdankin, V. V.; Stang, P. J. "Recent developments in the chemistry of polyvalent iodine compounds" Chem. Rev. 2002, 102, 2523–2584. (c) Stang, P. J. "Polyvalent iodine in organic chemistry" J. Org. Chem. 2003, 68, 2997–3008. (d) Wirth, T. "Hypervalent iodine chemistry in synthesis: Scope and new directions" Angew. Chem. Int. Ed. 2005, 44, 3656–3665. (e) Zhdankin, V. V. "Organoiodine(V) reagents in organic synthesis" J. Org. Chem. 2011, 76, 1185–1197. 39. (a) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. "Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols" J. Chem. Soc., Chem. Commun. 1987, 1625–1627. (b) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. "Tetrapropylammonium perruthenate, Pr4N+RuO4–, TPAP: A catalytic oxidant for organic synthesis" Synthesis 1994, 639–666. 40. (a) Ganem, B. "Biological spin labels as organic reagents. Oxidation of alcohols to carbonyl compounds using nitroxyls" J. Org. Chem. 1975, 40, 1998–2000. (b) Ma, Z.; Bobbitt, J. M. "Organic oxoammonium salts. 3. A new convenient method for the oxidation of alcohols to aldehydes and ketones" J. Org. Chem. 1991, 56, 6110–6114. (c) Nooy, A. E. J. d.; Besemer, A. C.; Bekkum, H. v. "On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols" Synthesis 1996, 1153–1174. 41. (a) Oppenauer, R. V. "Eine Methode der Dehydrierung von Sekunda"ren Alkoholen zu Ketonen. I. Zur Herstellung von Sterinketonen und Sexualhormonen (A method to dehydrate secondary alcohols to ketones. I. For the production of ketosteroids and sex hormones)" Recl. Trav. Chim. Pays-Bas 1937, 56, 137–144. (b) Graauw, C. F. d.; Peters, J. A.; Bekkum, H. v.; Huskens, J. "Meerwein-Ponndorf-Verley reductions and Oppenauer oxidations: An integrated approach" Synthesis 1994, 1007–1017. (c) Graves, C. R.; Zeng, B.-S.; Nguyen, S. T. "Efficient and selective Al-catalyzed alcohol oxidation via Oppenauer chemistry" J. Am. Chem. Soc. 2006, 128, 12596–12597. 42. (a) Fatiadi, A. J. "Active manganese dioxide oxidation in organic chemistry - Part I" Synthesis 1976, 65–104. (b) Fatiadi, A. J. "Active manganese dioxide oxidation in organic chemistry - Part II" Synthesis 1976, 133–167. 43. Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. "Oxidation of alcohols with o-iodoxybenzoic acid (IBX) in DMSO: A new insight into an old hypervalent iodine reagent" J. Org. Chem. 1995, 60, 7272–7276. 44. Hartmann, C.; Meyer, V. "Ueber Jodobenzoësäure (About iodoxybenzoic acid)" Chem. Ber. 1893, 26, 1727–1732. 45. Frigerio, M.; Santagostino, M. "A mild oxidizing reagent for alcohols and 1,2-diols: o-Iodoxybenzoic acid (IBX) in DMSO" Tetrahedron Lett. 1994, 35, 8019–8022. 46. Lapitskaya, M. A.; Vasiljeva, L. L.; Pivnitsky, K. K. "o-Iodoxybenzoic acid in dimethylformamide as a convenient reagent for the oxidation of alcohols to aldehydes and ketones" Mendeleev Commun. 2008, 18, 309–311. 47. (a) Dess, D. B.; Martin, J. C. "Readily accessible 12-I-4 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones" J. Org. Chem. 1983, 48, 4155–4156. (b) Dess, D. B.; Martin, J. C. "A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species" J. Am. Chem. Soc. 1991, 113, 7277–7287. 48. Thottumkara, A. P.; Vinod, T. K. "Synthesis and oxidation reactions of a user- and eco-friendly hypervalent iodine reagent" Tetrahedron Lett. 2002, 43, 569–572. 49. Richardson, R. D.; Zayed, J. M.; Altermann, S.; Smith, D.; Wirth, T. "Tetrafluoro-IBA and-IBX: Hypervalent iodine reagents" Angew. Chem. Int. Ed. 2007, 46, 6529–6532. 50. Zhdankin, V. V.; Smart, J. T.; Zhao, P.; Kiprof, P. "Synthesis and reactions of amino acid-derived benziodazole oxides: New chiral oxidizing reagents" Tetrahedron Lett. 2000, 41, 5299–5302. 51. Zhdankin, V. V.; Koposov, A. Y.; Netzel, B. C.; Yashin, N. V.; Rempel, B. P.; Ferguson, M. J.; Tykwinski, R. R. "IBX amides: A new family of hypervalent iodine reagents" Angew. Chem. Int. Ed. 2003, 42, 2194–2196. 52. Moorthy, J. N.; Singhal, N.; Senapati, K. "Modified o-methyl-substituted IBX: Room temperature oxidation of alcohols and sulfides in common organic solvents" Tetrahedron Lett. 2008, 49, 80–84. 53. Chen, J. J.; Aduda, V. "DMSO-Aided o-iodoxybenzoic acid (IBX) oxidation of Fmoc-protected amino alcohols" Synth. Commun. 2007, 37, 3493–3499. 54. Moorthy, J. N.; Singhal, N.; Venkatakrishnan, P. "Studies on oxidations with IBX: Oxidation of alcohols and aldehydes under solvent-free conditions" Tetrahedron Lett. 2004, 45, 5419–5424. 55. Ozanne, A.; Pouységu, L.; Depernet, D.; François, B.; Quideau, S. "A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers" Org. Lett. 2003, 5, 2903–2906. 56. Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. "In situ generation of o-iodoxybenzoic acid (IBX) and the catalytic use of it in oxidation reactions in the presence of oxone as a co-oxidant" Org. Lett. 2005, 7, 2933–2936. 57. (a) Kuhakarn, C.; Kittigowittana, K.; Pohmakotr, M.; Reutrakul, V. "IBX/n-Bu4NBr/CH2Cl2-H2O: A new mild system for selective oxidation of secondary alcohols" Tetrahedron 2005, 61, 8995–9000. (b) Kuhakarn, C.; Kittigowittana, K.; Ghabkham, P.; Pohmakotr, M.; Reutrakul, V. "Mild oxidation of alcohols with o-iodoxybenzoic acid (IBX) in a water/CH2Cl2 mixture in the presence of phase-transfer catalyst" Synth. Commun. 2006, 36, 2887–2892. 58. More, J. D.; Finney, N. S. "A simple and advantageous protocol for the oxidation of alcohols with o-iodoxybenzoic acid (IBX)" Org. Lett. 2002, 4, 3001–3003. 59. (a) Karthikeyan, G.; Perumal, P. T. "An ionic liquid mediated efficient oxidation of alcohols using o-iodoxybenzoic acid (IBX) - a simple and eco-friendly protocol" Synlett 2003, 2249–2251. (b) Liu, Z.; Chen, Z.-C.; Zheng, Q.-G. "Mild oxidation of alcohols with o-iodoxybenzoic acid (IBX) in ionic liquid 1-butyl-3-methyl-imidazolium chloride and water" Org. Lett. 2003, 5, 3321–3323. (c) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. "Recyclable 2nd generation ionic liquids as green solvents for the oxidation of alcohols with hypervalent iodine reagents" Tetrahedron 2004, 60, 2131–2135. 60. Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. "Mild oxidation of alcohols with o-iodoxybenzoic acid (IBX) in water/acetone mixture in the presence of beta-cyclodextrin" J. Org. Chem. 2003, 68, 2058–2059. 61. (a) Mülbaier, M.; Giannis, A. "The synthesis and oxidative properties of polymer-supported IBX" Angew. Chem. Int. Ed. 2001, 40, 4393–4394. (b) Sorg, G.; Mengel, A.; Jung, G.; Rademann, J. "Oxidizing polymers: A polymer-supported, recyclable hypervalent iodine(V) Reagent for the efficient conversion of alcohols, carbonyl compounds, and unsaturated carbamates in solution" Angew. Chem. Int. Ed. 2001, 40, 4395–4397. (c) Lei, Z.; Denecker, C.; Jegasothy, S.; Sherrington, D. C.; Slater, N. K. H.; Sutherland, A. J. "A facile route to a polymer-supported IBX reagent" Tetrahedron Lett. 2003, 44, 1635–1637. 62. Plumb, J. B.; Harper, D. J. "Chemical safety: 2-Iodoxybenzoic acid" Chem. Eng. News 1990, 68, 3–3. 63. Swern oxidation, Jones reagent, and Parikn-Doering oxidation have been attempted for the following transformation but all gave unsatisfactory yields of the desired product. 64. Lu, T.-J.; Lin, C.-K. "Asymmetric synthesis of α-methyl-α-amino acids via diastereoselective alkylation of (1S)-(+)-3-carene derived tricyclic iminolactone" J. Org. Chem. 2011, 76, 1621–1633. 65. Lin, C.-K.; Lu, T.-J. "A simple method for the oxidation of primary alcohols with o-iodoxybenzoic acid (IBX) in the presence of acetic acid" Tetrahedron 2010, 66, 9688–9693. 66. Taber, D. F.; Amedio, J. C., Jr.; Jung, K.-Y. "P2O5/DMSO/Triethylamine (PDT): A convenient procedure for oxidation of alcohols to ketones and aldehydes" J. Org. Chem. 1987, 52, 5621–5622. 67. Carlson, R. G.; Pierve, J. K. "Synthesis and stereochemistry of the four isomeric pinane-2,3-diols" J. Org. Chem. 1971, 36, 2319–2324. 68. Neises, B.; Steglich, W. "Simple method for the esterification of carboxylic acids" Angew. Chem. Int. Ed. 1978, 17, 522–524. 69. 顧得祥,“α-胺基酸不對稱合成之方法研究 – (R)-6-(4-甲氧基苯氧基)-3-甲基-5-苯基-3,6-二氧-[1,4]亞胺基內酯之製備暨其應用”,國立中興大學化學系研究所碩士論文 (2003)。 70. Ooi, T.; Kameda, M.; Maruoka, K. "Molecular design of a C2-symmetric chiral phase-transfer catalyst for practical asymmetric synthesis of α-amino acids" J. Am. Chem. Soc. 1999, 121, 6519–6520. 71. Crystallographic data for structures 51a, 51e, 51g, 51l, 51m, and 51o have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 789878, CCDC 789879, CCDC 789880, CCDC 789881, CCDC 789882, and CCDC 789883, respectively. Crystallographic in CIF format can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. 72. Chinchilla, R.; Falvello, L. R.; Galindo, N.; Nájera, C. "Asymmetric synthesis of substituted 1-aminocyclopropane-1-carboxylic acids from a new chiral glycine equivalent with 3,6-dihydro-2H-1,4-oxazin-2-one structure" Tetrahedron: Asymmetry 1998, 9, 2223–2227. 73. See in the Experimental Section. 74. A variety of solvents such as THF, DCM, EtOAc, acetone, acetonitrile, and DMSO have been examined but acetonitrile was found to be the solvent of choice in our studies. IBX oxidation in acetonitrile was utilized in the preparation of the α-hydroxy ketone in our study on the synthesis of α-amino acids. In this study, the addition of 2 equiv of water was necessary to give 75% of the desired product.24 The reaction yield was greatly improved (93%) by replacing water with acetic acid (unpublished results). 75. Frigerio, M.; Santagostino, M.; Sputore, S. "A user-friendly entry to 2-iodoxybenzoic acid (IBX)" J. Org. Chem. 1999, 64, 4537–4538. 76. Siebum, A. H. G.; Woo, W. S.; Lugtenburg, J. "Preparation and characterization of [5-13C]-(2S,4R)-leucine and [4-13C]-(2S,3S)-valine - Establishing synthetic schemes to prepare any site-directed isotopomer of L-leucine, L-isoleucine and L-valine" Eur. J. Org. Chem. 2003, 4664–4678. 77. Liu, R.; Zhang, P.; Gan, T.; Cook, J. M. "Regiospecific bromination of 3-methylindoles with NBS and its application to the concise synthesis of optically active unusual tryptophans present in marine cyclic peptides" J. Org. Chem. 1997, 62, 7447–7456. 78. Corey, E. J.; McCaully, R. J.; Sachdev, H. S. "Studies on the asymmetric synthesis of α-amino acids. I. A new approach" J. Am. Chem. Soc. 1970, 92, 2476–2488. 79. Alonso, F.; Davies, S. G.; Elend, A. S.; Haggitt, J. L. "Enantiospecific alkylation of alanine" J. Chem. Soc., Perkin Trans. 1 1998, 257–264. 80. Baker, C. G.; Fu, S.-C.; Birnbaum, S. M.; Sober, H. A. Greenstein, J. P. "Optical enantiomorphs of isovaline" J. Am. Chem. Soc. 1952, 74, 4701–4702.
摘要: 
1. Asymmetric Synthesis of α-Methyl-α-Amino Acids via Diastereoselective Alkylation of (1S)-(+)-3-Carene-derived Tricyclic Iminolactone
Either proteinogenic or nonproteinogenic α-amino acids play very important roles in many fields. Due to the importance of α-amino acids, numerous efficient methods for their asymmetric synthesis have been growing rapidly. Although these methods can provide good yields and enantiomeric excesses of α-amino acids, some of them suffered from requiring the use of strong bases under low temperatures or resulting in poor or no recovery of chiral auxiliaries, hence restricting the applicability of these methods. Herein, we report the development of a novel carene-based alanine-equivalent tricyclic iminolactone 50, which can be synthesized via stereoselective dihydroxylation of the double bond, IBX oxidation of the secondary alcohol, esterification of the tertiary alcohol, deprotection of the resulting ester, and subsequent cyclization from commercially available (1S)-(+)-3-carene in 79% overall yield. The iminolactone 50 demonstrated high reactivity toward alkylation with a wide range of electrophiles at room temperature under phase-transfer catalysis conditions. The alkylated products were produced with excellent diastereoselectivities (>98% de) in good isolated yields (86-94%). High yields (83-91%) of optically pure (S)-α-methyl-α-substituted-α-amino acids were obtained by basic hydrolysis of the dialkylated iminolactones with the recovery of the chiral auxiliary 47 (78-87%). A carene-derived tricyclic iminolactone and its application in asymmetric synthesis of α-amino acids has been successfully established. α-Amino acids can be obtained in excellent chemical and optical yields under very mild and environmentally friendly reaction conditions, providing a useful tool in biochemical and medical researches.

2. A Simple Method for the Oxidation of Primary Alcohols with 2-Iodoxybenzoic Acid (IBX) in the Presence of Acetic Acid
Oxidation of primary alcohols into their corresponding aldehydes is a very important reaction in organic synthesis. However, some of the current processes are carried out under strong acidic conditions and some oxidations of primary alcohols can not stop at the aldehyde stage. Besides, some methods are performed under inconvenient conditions (low reaction temperatures, inert atmosphere, dry solvents, and expensive, contaminated or moisture-sensitive reagents). A convenient and effective method for converting primary alcohols to aldehydes is still in great demand. Herein, we use 2-iodoxybenzoic acid as the oxidizing agent in the presence of acetic acid to developing an efficient and simple method for conversion of primary alcohols to their corresponding aldehydes. Both 2-iodoxybenzoic acid and acetic acid are mild, environmentally benign, functional group tolerant, easily accessible and air- or moisture- stable reagents. Addition of acetic acid can significantly accelerate the reaction rate. Under these conditions, primary aliphatic, benzylic, and allylic alcohols are smoothly converted to aldehydes in high yields (90-97%). A wide range of primary alcohols can be oxidized to aldehydes in excellent yields without further oxidizing to carboxylic acids demonstrating the usefulness of our method.

1. α-胺基酸的不對稱合成:(1S)-(+)-3-蒈烯 (carene) 衍生之三環亞胺基內酯的合成及其應用
不論是蛋白質 (proteinogenic) 或是非蛋白質的 (nonproteinogenic) α-胺基酸在許多領域中一直是扮演著很重要的角色。因為它的重要性,所以關於α-胺基酸不對稱合成的方法因應而迅速發展。僅管這些方法能提供不錯的產率與鏡像超度值的α-胺基酸,但通常需在使用強鹼低溫下操作或者掌性輔助基回收率低抑或無法回收,限制了這些方法的應用性。因此,我們開發了一個新穎的蒈烯衍生之丙胺酸同等物 (equivalent) 三環亞胺基內酯50,可從(1S)-(+)-3-蒈烯由立體選擇性烯類之雙醇化反應、2-碘醯基苯甲酸氧化二級醇反應、三級醇之酯化反應、去保護以及其後的合環反應的方式被合成,總產率為79%。亞胺基內酯50與廣範圍的親電子試劑於室溫下在相轉移催化反應條件下表現出相當高的烷化反應性,得到高非鏡像選擇性 (>98% de) 及高單離產率 (86–94%) 的烷化產物。在烷化產物的鹼性水解反應後,可獲得良好產率 (83–91%) 之高光學純度的(S)-α-甲基-α-取代基-α-胺基酸並回收78–87%的掌性輔助基47。我們已成功地開發出蒈烯衍生的三環掌性亞胺基內酯,當將其應用於合成α-胺基酸時,可以在極為溫和與環保的反應條件下,得到極佳產率及光學純度之各式各樣的α,α-雙取代的α-胺基酸,對生化及醫學研究提供了有力的工具。

2. 醛類化合物的製備:開發以2-碘醯基苯甲酸氧化一級醇之實用方法
氧化醇類至相應之羰基化合物在有機合成中是一個相當重要的反應。因此,各種的氧化方式因應而蓬勃發展。然而,現有的氧化條件有些需在強酸下進行,有些則會將一級醇氧化至羧酸而無法停留在醛基。此外,有些氧化方法需要在嚴苛的反應條件下操作,例如:在低的反應溫度、使用惰性氣體、溶劑必須事先除水及使用對溼度高敏感、昂貴或對環境污染高之試劑等。因此,我們發展了一個溫和、對眾多官能基的耐受性高、選擇性高、易取得及在空氣與溼度穩定的2-碘醯基苯甲酸作為氧化試劑,在便宜與無污染性的醋酸存在下,將一級醇氧化至醛之簡單方法。添加醋酸可有效地加速氧化反應。在所使用的反應條件下,一級之脂肪醇、苯甲醇與丙烯醇可被以高產率 (90–97%) 轉變為醛類。我們所開發的是一個產率高、操作手續簡易、使用對環境衝擊小的試劑,由一級醇製備醛的實用方法。
URI: http://hdl.handle.net/11455/16898
其他識別: U0005-2208201113255700
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.