Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16916
DC FieldValueLanguage
dc.contributor李茂榮zh_TW
dc.contributorMaw-Rong Leeen_US
dc.contributor楊慶成zh_TW
dc.contributor.advisor鄭政峯zh_TW
dc.contributor.advisorJen-Fon Jenen_US
dc.contributor.author林巧雯zh_TW
dc.contributor.authorLin, Chiao-Wenen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:56:39Z-
dc.date.available2014-06-06T06:56:39Z-
dc.identifierU0005-2707201111421900zh_TW
dc.identifier.citation1. Hartonen, K.; Riekkola, M. L., Liquid chromatography at elevated temperatures with pure water as the mobile phase. TrAC Trends in Analytical Chemistry 2008, 27 (1), 1-14. 2. Hoffmann, M. M.; Conradi, M. S., Are there hydrogen bonds in supercritical water? Journal of the American Chemical Society 1997, 119 (16), 3811-3817. 3. Brunner, G., Supercritical fluids: technology and application to food processing. Journal of Food Engineering 2005, 67 (1-2), 21-33. 4. Walrafen, G.; Yang, W. H.; Chu, Y., Raman spectra from saturated water vapor to the supercritical fluid. The Journal of Physical Chemistry B 1999, 103 (8), 1332-1338. 5. Meyer, C.; steam, A. S. o. M. E. R. C. o. P. o., Thermodynamic and Transport Properties of Steam, Comprising Tables and Charts for Steam and Water. American Society of Mechanical Engineers: 1967. 6. Hogg, J. L., Viscosity of Air. Proceedings of the American Academy of Arts and Sciences 1905, 40 (18), 611-626. 7. 張麗莉, 超臨界水的特性及應用. 化學工業與工程 2003, 20 (1), 33-39. 8. Yang, Y.; Belghazi, M.; Lagadec, A.; Miller, D. J.; Hawthorne, S. B., Elution of organic solutes from different polarity sorbents using subcritical water. Journal of Chromatography A 1998, 810 (1-2), 149-159. 9. Akerlof, G.; Oshry, H., The dielectric constant of water at high temperatures and in equilibrium with its vapor. Journal of the American Chemical Society 1950, 72 (7), 2844-2847. 10. D Antia, F.; Horvath, C., High-performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules. Journal of Chromatography A 1988, 435, 1-15. 11. Han, J.-A.; Lim, S.-T., Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydrate Polymers 2004, 55 (3), 265-272. 12. Silva-Lucca, R. A.; Tabak, M.; Nascimento, O. R.; Roque-Barreira, M. C.; Beltramini, L. M., Structural and thermodynamic studies of KM+, a -mannose binding lectin from Artocarpus integrifolia seeds. Biophysical Chemistry 1999, 79 (2), 81-93. 13. Zhou, L.; Thompson, R.; Reamer, R. A.; Miller, C.; Welch, C.; Ellison, D. K.; Wyvratt, J. M., Mechanistic study of enantiomeric recognition with native [gamma]-cyclodextrin by capillary electrophoresis, reversed-phase liquid chromatography, nuclear magnetic resonance spectroscopy, electrospray mass spectrometry and circular dichroism techniques. Journal of Chromatography A 2003, 987 (1-2), 409-420. 14. John, A.; Stringham, R. W.; Weckwerth, J. D., Effect of mobile phase additives in packed-column subcritical and supercritical fluid chromatography. Analytical Chemistry 1997, 69 (3), 409-415. 15. Smith, R. M.; Burgess, R. J., Superheated water as an eluent for reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1997, 785 (1-2), 49-55. 16. Miller, D. J.; Hawthorne, S. B., Subcritical water chromatography with flame ionization detection. Analytical Chemistry 1997, 69 (4), 623-627. 17. Greibrokk, T.; Andersen, T., High-temperature liquid chromatography. Journal of Chromatography A 2003, 1000 (1-2), 743-755. 18. 呂秀陽;何龍;鄭贊勝;蔡磊, 近臨界水中的綠色化工過程. 化工進展 2003, 22 (5), 477-481. 19. Miller, D. J.; Hawthorne, S. B., Method for determining the solubilities of hydrophobic organics in subcritical water. Analytical Chemistry 1998, 70 (8), 1618-1621. 20. He, P.; Yang, Y., Studies on the long-term thermal stability of stationary phases in subcritical water chromatography. Journal of Chromatography A 2003, 989 (1), 55-63. 21. Jones, A.; Yang, Y., Separation of nonpolar analytes using methanol-water mixtures at elevated temperatures. Analytica chimica acta 2003, 485 (1), 51-55. 22. Kondo, T.; Yang, Y., Comparison of elution strength, column efficiency, and peak symmetry in subcritical water chromatography and traditional reversed-phase liquid chromatography. Analytica chimica acta 2003, 494 (1-2), 157-166. 23. Lamm, L. J.; Yang, Y., Off-line coupling of subcritical water extraction with subcritical water chromatography via a sorbent trap and thermal desorption. Analytical Chemistry 2003, 75 (10), 2237-2242. 24. Li, B.; Yang, Y.; Gan, Y.; Eaton, C. D.; He, P.; Jones, A. D., On-line coupling of subcritical water extraction with high-performance liquid chromatography via solid-phase trapping. Journal of Chromatography A 2000, 873 (2), 175-184. 25. Yang, Y.; Jones, A. D.; Mathis, J. A.; Francis, M. A., Flame ionization detection after splitting the water effluent in subcritical water chromatography. Journal of Chromatography A 2002, 942 (1-2), 231-236. 26. Yang, Y.; Lamm, L. J.; He, P.; Kondo, T., Temperature effect on peak width and column efficiency in subcritical water chromatography. Journal of chromatographic science 2002, 40 (2), 107-112. 27. 劉光會, 色譜分析的新領域-高溫液相色譜. 天然氣化工 2000, 25 (6), 46-52. 28. 吳仁銘, 亞臨界水在分析化學中的應用. 化學進展 2002, 14 (1), 32-36. 29. 韓海;于榮敏;王歡;孫平華, 亞臨界水作為高效液相色譜流動及萃取劑的研究概況. 兒科藥學雜誌 2003, 9 (4), 11-12. 30. Lima III, L. R.; Synovec, R. E., Uncoupling the effects of convection and diffusion on refractive index gradient detection in high-temperature liquid chromatography. Analytical Chemistry 1993, 65 (2), 128-134. 31. Renn, C. N.; Synovec, R. E., Refractive index gradient detection of biopolymers separated by high-temperature liquid chromatography. Journal of Chromatography A 1991, 536, 289-301. 32. 李玲;陸峰;孫鵬;原永芳;吳玉田, 藥學學報 2000, 35 (11), 832-834. 33. Smith, R. M.; Burgess, R. J., Superheated water-a clean eluent for reversed-phase high-performance liquid chromatography. Analytical Communications 1996, 33 (9), 327-329. 34. Bruckner, C. A.; Ecker, S. T.; Synovec, R. E., Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase. Analytical Chemistry 1997, 69 (17), 3465-3470. 35. Fogwill, M. O.; Thurbide, K. B., Carbon dioxide modified subcritical water chromatography. Journal of Chromatography A 2008, 1200 (1), 49-54. 36. Smith, R. M., Superheated water chromatography-A green technology for the future. Journal of Chromatography A 2008, 1184 (1-2), 441-455. 37. Tajuddin, R.; Smith, R. M., On-line coupled superheated water extraction (SWE) and superheated water chromatography (SWC). Analyst 2002, 127 (7), 883-885. 38. Wuepper, K. D., Paraben contact dermatitis. JAMA: The Journal of the American Medical Association 1967, 202 (7), 579. 39. Mowad, C. M., Allergic contact dermatitis caused by parabens: 2 case reports and a review. American Journal of Contact Dermatitis 2000, 11 (1), 53-56. 40. Odum, J.; Lefevre, P. A.; Tittensor, S.; Paton, D.; Routledge, E. J.; Beresford, N. A.; Sumpter, J. P.; Ashby, J., The Rodent Uterotrophic Assay: Critical Protocol Features, Studies with Nonyl Phenols, and Comparison with a Yeast Estrogenicity Assay. Regulatory Toxicology and Pharmacology 1997, 25 (2), 176-188. 41. Routledge, E. J.; Parker, J.; Odum, J.; Ashby, J.; Sumpter, J. P., Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and Applied Pharmacology 1998, 153 (1), 12-19. 42. Darbre, P.; Aljarrah, A.; Miller, W.; Coldham, N.; Sauer, M.; Pope, G., Concentrations of parabens in human breast tumours. Journal of applied toxicology 2004, 24 (1), 5-13. 43. Lee, M. R.; Lin, C. Y.; Li, Z. G.; Tsai, T. F., Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography-mass spectrometry. Journal of Chromatography A 2006, 1120 (1-2), 244-251. 44. Ramirez, N.; Marce, R. M.; Borrull, F., Development of a thermal desorption-gas chromatography-mass spectrometry method for determining personal care products in air. Journal of Chromatography A 2010, 1217 (26), 4430-4438. 45. Tammilehto S, B. J., Pharmaceutica Acta Helvetiae 1968, 43, 726. 46. Sottofattori, E.; Anzaldi, M.; Balbi, A.; Tonello, G., Simultaneous HPLC determination of multiple components in a commercial cosmetic cream. Journal of Pharmaceutical and Biomedical Analysis 1998, 18 (1-2), 213-217. 47. Wisniak, J.; Tamir, A., Liquid-liquid equilibrium and extraction : a literature source book. Supplement 1. Elsevier ; Distributors for the U.S. and Canada, Elsevier Science Pub. Co.: Amsterdam; New York; New York, N.Y., 1985. 48. Labat, L.; Kummer, E.; Dallet, P.; Dubost, J. P., Comparison of high-performance liquid chromatography and capillary zone electrophoresis for the determination of parabens in a cosmetic product. Journal of Pharmaceutical and Biomedical Analysis 2000, 23 (4), 763-769. 49. Scalia, S.; Games, D. E., Determination of parabens in cosmetic products by supercritical fluid extraction and high-performance liquid chromatography. Analyst 1992, 117 (5), 839-841. 50. Wang, L.; Zhang, X.; Wang, Y.; Wang, W., Simultaneous determination of preservatives in soft drinks, yogurts and sauces by a novel solid-phase extraction element and thermal desorption-gas chromatography. Analytica chimica acta 2006, 577 (1), 62-67. 51. Gonzalez, M.; Gallego, M.; Valcarcel, M., Gas chromatographic flow method for the preconcentration and simultaneous determination of antioxidant and preservative additives in fatty foods. Journal of Chromatography A 1999, 848 (1-2), 529-536. 52. Lee, H.-B.; Peart, T. E.; Svoboda, M. L., Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry. Journal of Chromatography A 2005, 1094 (1-2), 122-129. 53. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry 1990, 62 (19), 2145-2148. 54. Pawliszyn, J., Solid phase microextraction: theory and practice. Vch Verlagsgesellschaft Mbh: 1997. 55. Zhang, Z.; Yang, M. J.; Pawliszyn, J., Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation. Analytical Chemistry 1994, 66 (17), 844A-853A. 56. Canosa, P.; Rodriguez, I.; Rubi, E.; Bollain, M. H.; Cela, R., Optimisation of a solid-phase microextraction method for the determination of parabens in water samples at the low ng per litre level. Journal of Chromatography A 2006, 1124 (1-2), 3-10. 57. Shamsipur, M.; Hassan, J., A novel miniaturized homogenous liquid-liquid solvent extraction-high performance liquid chromatographic-fluorescence method for determination of ultra traces of polycyclic aromatic hydrocarbons in sediment samples. Journal of Chromatography A 2010, 1217 (30), 4877-4882. 58. 邱翊桓, 以超音波萃取結合非溶劑分離萃取技術及氣相層析電子捕捉偵測器分析柳丁果皮中農藥殘留量. 碩士論文,國立中興大學: 2010. 59. Gu, T.; Zheng, Y.; Gu, Y.; Haldankar, R.; Bhalerao, N.; Ridgway, D.; Wiehl, P. E.; Chen, W. Y.; Kopchick, J. J., Purification of a pyrogen-free human growth hormone antagonist. Biotechnology and Bioengineering 1995, 48 (5), 520-528. 60. Oence, D. N.; Gu, T., Liquid-liquid equilibrium of the acetonitrile-water system for protein purification. Separations Technology 1996, 6 (4), 261-264. 61. Rice, N.; Irving, H.; Leonard, M., Nomenclature for liquid-liquid distribution (solvent extraction). Pure Appl Chem 1993, 65, 2373-2396. 62. Takamuku, T.; Yamaguchi, A.; Matsuo, D.; Tabata, M.; Kumamoto, M.; Nishimoto, J.; Yoshida, K.; Yamaguchi, T.; Nagao, M.; Otomo, T., Large-angle X-ray scattering and small-angle neutron scattering study on phase separation of acetonitrile-water mixtures by addition of NaCl. The Journal of Physical Chemistry B 2001, 105 (26), 6236-6245. 63. Debye, P. M., J., The electric field of ions and the action of neutral salts. Physikalische Zeitschrift 1925, 26, 22-29. 64. Long, F. A.; McDevit, W. F., Activity Coefficients of Nonelectrolyte Solutes in Aqueous Salt Solutions. Chemical Reviews 1952, 51 (1), 119-169. 65. Krishnan, C. V.; Friedman, H. L., Model calculations for Setchenow coefficients. Journal of Solution Chemistry 1974, 3 (9), 727-744. 66. Setschenow, Uber Die Konstitution Der Salzlosungenauf Grund Ihres Verhaltens Zu Kohlensaure. Z. Physik. Chem 1889, 4, 117-125. 67. Ruetschi, P.; Amlie, R. F., Solubility of Hydrogen in Potassium Hydroxide and Sulfuric Acid. Salting-out and Hydration. The Journal of Physical Chemistry 1966, 70 (3), 718-723. 68. Skoog, D. A.; West, D. M.; Holler, F. J., Analytical chemistry. Holt, Rinehart and Winston Toronto: 1979. 69. Gupta, M.; Jain, A.; Verma, K. K., Salt-assisted liquid-liquid microextraction with water-miscible organic solvents for the determination of carbonyl compounds by high-performance liquid chromatography. Talanta 2009, 80 (2), 526-531. 70. Matkovich, C. E.; Christian, G. D., Salting-out of acetone from water. Basis of a new solvent extraction system. Analytical Chemistry 1973, 45 (11), 1915-1921. 71. Zhang, Y.; Cremer, P. S., Interactions between macromolecules and ions: the Hofmeister series. Current opinion in chemical biology 2006, 10 (6), 658-663. 72. F. Hofmeister, Z. L. v. d. W. d. S., Zur Lehre von der Wirkung der Salze - Zweite Mittheilung [Title translation: About the science of the effect of salts.]. Arch Exp Pathol Pharmakol 1888, 24, 247-260. 73. Mille, L. M., Anal. Fis. Quim. (Madrid) 1945, 41, 120. 74. Cacace, M. G.; Landau, E. M.; Ramsden, J. J., The Hofmeister series: salt and solvent effects on interfacial phenomena. Quarterly Reviews of Biophysics 1997, 30 (03), 241-277. 75. Tsai, K.-P.; Chen, C.-Y., An algal toxicity database of organic toxicants derived by a closed-system technique. Environmental Toxicology and Chemistry 2007, 26 (9), 1931-1939. 76. Goss, F. R., 173. The magnitude of the solvent effect in dipole-moment measurements. Part III. Polarisation and association of alcohols in the liquid phase. Journal of the Chemical Society (Resumed) 1940, 888-894. 77. Sastry, N. V.; Patel, S. R., Excess volumes and dielectric properties for (methyl methacrylate + a branched alcohol) at T = 298.15 K and T = 308.15 K. The Journal of Chemical Thermodynamics 2000, 32 (12), 1669-1682. 78. Apelblat, A., The vapour pressures of saturated aqueous solutions of potassium bromide, ammonium sulfate, copper(II) sulfate, iron(II) sulfate, and manganese(II) dichloride, at temperatures from 283 K to 308 K. The Journal of Chemical Thermodynamics 1993, 25 (12), 1513-1520. 79. Gao, W.; Legido-Quigley, C., Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives. Journal of Chromatography A 2011. 80. Labat, L.; Kummer, E.; Dallet, P.; Dubost, J., Comparison of high-performance liquid chromatography and capillary zone electrophoresis for the determination of parabens in a cosmetic product. Journal of Pharmaceutical and Biomedical Analysis 2000, 23 (4), 763-769. 81. Yang, T.-J.; Tsai, F.-J.; Chen, C.-Y.; Yang, T. C.-C.; Lee, M.-R., Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Analytica chimica acta 2010, 668 (2), 188-194. 82. Melo, L. P.; Queiroz, M. E. C., Simultaneous analysis of parabens in cosmetic products by stir bar sorptive extraction and liquid chromatography. Journal of separation science 2010, 33 (12), 1849-1855. 83. Sanchez-Prado, L.; Lamas, J. P.; Lores, M.; Garcia-Jares, C.; Llompart, M., Simultaneous In-Cell Derivatization Pressurized Liquid Extraction for the Determination of Multiclass Preservatives in Leave-On Cosmetics. Analytical Chemistry 2010.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/16916-
dc.description.abstractIn this study, salt-assisted homogeneous liquid liquid extraction (SHLLE) followed by subcritical water chromatography (SBWC) for determination of preservatives including Methyl paraben (MP), Ethyl paraben (EP) , Propyl paraben (PP) in cosmetic products. For convenience in quantifying the collected solvent, the present work utilizes a self-designed glass container in the extraction process. The optimum parameters for SHLLE and SBWC of MP, EP and PP were investigated. The best results of extraction process were obtained as follows: To 5 ml liquid sample adjusted to pH 6, added 200μl Isopropanol as the extraction solvent followed by 4 g of ammonium sulfate as the phase separation agent. After phase separation, the upper layer containing the extraction solvent was collected and dried by moderate nitrogen, dissolved in water of pH 10.5 and injected into subcritical water chromatograph. The optimum results of SBWC were obtained by using PLRP-S (100A 5μm, 15 cm × 4.6 mm I.D.) column with pH 10.5 citric acid buffer as mobile phase. The temperature of the preheater and column oven were set as 80oC and 100oC respectively. Under these conditions, the liner range was 0.75-75 μg/L for MP, EP and 1.5-150 μg/L for PP with RSD below 9.2%. Detection limits were achieved at level of 0.07~0.1 μg/L. The results demonstrated that the proposed method was a simple, inexpensive and eco-friendly approach for the determination of paraben preservatives in cosmetic products.en_US
dc.description.abstract本研究開發鹽類輔助均相萃取技術結合次臨界水層析進行分離與偵測化妝品中的三種Parabens。使用自行設計的玻璃容器當作萃取裝置,並利用可與水互溶的萃取試劑,均相萃取後再加入硫酸銨鹽,輔助相的分層,經離心分層後,使上層的萃取溶劑經由容器上之刻度直接定量並取出,將取出的萃取溶劑利用氮氣吹乾後再以10 μL的水回溶進入次臨界水-UV系統進行偵測。在次臨界水系統中分離偵測三種Parabens,使用動相pH 10.5的緩衝溶液、管柱加熱器100℃、UV波長296 nm,有最佳的層析效果。而在鹽輔助均相萃取技術,為了求得此方法的最佳化條件分別對萃取溶劑、萃取溶劑的體積、硫酸銨鹽的添加量和水樣的pH值等參數進行探討。實驗結果發現,在5毫升pH 6的水樣中,加入200 μL的Isopropanol,並添加4克的硫酸銨鹽攪拌至飽和可獲得最佳的萃取效果。Parabens在經由方法最佳條件下濃縮倍率為238~309之間,偵測極限為0.07~0.1μg/L之間。將本方法應用在真實樣品中回收率為92.3% ~ 109.6%。整個實驗方法與分析過程僅需要數百微升的有機溶劑,是一個方法裝置簡單、快速的綠色化學分析法。zh_TW
dc.description.tableofcontents謝誌 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 一、 前言 1 二、 次臨界水層析法概論 3 (一) 次臨界水的性質 3 (二) 次臨界水文獻回顧 9 三、 Parabens簡介-生活用品中的防腐劑 19 四、 常見的Parabens樣品前處理技術 22 (一) 液液萃取法 ( Liquid-liquid extraction,LLE ) 22 (二) 超臨界流體萃取法 ( Supercritical fluid extraction,SFE ) 23 (三) 固相萃取法 ( Solid phase extraction,SPE ) 24 (四) 固相微萃取法 ( SPME ) 25 (五) 均相液液萃取法 29 五、 研究目的 35 第二章 實驗材料與研究方法 36 一、 藥品、器材及儀器設備 36 (一) 藥品 36 (二) 器材 37 (三) 儀器設備 37 (四) 儀器裝置圖 38 (五) 玻璃萃取裝置 39 二、 藥品配製 42 (一) 動相沖提液的配製 42 (二) 標準品的配製 43 (三) MP 、EP、PP檢量線範圍濃度溶液的配置 43 (四) 直接檢測於真實樣品的配製 44 (五) 添加方法於真實樣品的配製 44 三、 儀器設計及操作條件 45 (一) 次臨界水層析儀系統參數 45 (二) 鹽輔助均項萃取系統參數 45 (三) 鹽輔助均相萃取法實驗操作步驟 45 (四) 次臨界水層析系統建構 47 (五) 鹽輔助均相萃取最佳化條件之探討 51 (六) 再現性探討與真實樣品測定 53 第三章 結果與討論 54 一、 次臨界水層析法最佳條件探討 54 (一) UV偵測波長的選擇 54 (二) 動相pH值與管柱加熱器的選擇 54 (三) 萃取溶劑在次臨界水層析法中的影響 59 (四) 次臨界水層析系統最佳化條件 59 二、 鹽輔助均相萃取法最佳化條件探討 61 (一) 鹽輔助均相萃取法中萃取溶劑的選擇 61 (二) 鹽輔助均相萃取法中鹽類的選擇 64 (三) 萃取溶劑的體積 65 (四) 鹽類添加量 67 (五) 水樣pH值的影響 67 三、 方法可行性的評估 70 (一) 以直接進樣三種Parabens化合物於次臨界層析系統分析 70 (二) 經由鹽輔助萃取法萃取水中三種Parabens並經由次臨界層析系統中分析 70 (三) 鹽輔助均相萃取法與其他萃取方法比較 72 四、 真實樣品的分析 74 (一) 直接檢測 74 (二) 添加方式檢測 74 第四章 結論 78 第五章 參考文獻 79zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707201111421900en_US
dc.subjectsalt-assisted homogeneous liquid liquid extractionen_US
dc.subject鹽類輔助均相萃取zh_TW
dc.subjectsubcritical water chromatographyen_US
dc.subjectparabensen_US
dc.subject次臨界水層析法zh_TW
dc.subjectParabenszh_TW
dc.titleSalt-assisted homogenous extraction followed by subcritical water chromatography for the determination of parabens in cosmetic productsen_US
dc.title鹽輔助均相萃取技術結合次臨界水層析法偵測化妝品中Parabens含量zh_TW
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.grantfulltextnone-
Appears in Collections:化學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.