Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/16919
標題: Zinc Complexes Containing Pyrazolyl-phenolate Ligands: Synthesis, Characterization and Application in Ring-Opening Polymerization of L-Lactide
吡唑苯酚基鋅錯合物之合成、鑑定及其對左旋乳酸交酯開環聚合反應之應用
作者: 黃勃喻
Huang, Bo-Yu
關鍵字: Zinc;鋅;Ring-Opening Polymerization;開環聚合反應
出版社: 化學系所
引用: 參考文獻 1.Polylactic Acid: Synthesis, Properties and Applications, L. Averous, 2008, 433. 2.S.Mecking, Angew. Chem. Int. Ed., 2004, 43, 1078. 3.http://www.natureworksllc.com/ 4.http://www.unitika.co.jp/terramac/ 5.http://www.elite-plastic.com.tw/COC_Application.htm 6.(a) A. Kumar and R. A. Gross, Biomacromolecules., 2000, 1, 133. ; (b) F. C. Loeker, C. J. Duxbury, R. Kumar, W. Gao, R. A. Gross and S. M. Howdle, Macromolecules., 2004, 37, 2450. ; (c) S. Matsumura, K. Mabuchi, and K. Toshima, Macromol. Rapid Commun., 1997, 18, 477. 7.N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. G.Lohmeijer and J. L. Hedrick, Chem. Rev., 2007, 107, 5813. 8.O. D. Cabaret, B. M. Vaca and D. Bourissou, Chem. Rev., 2004, 104, 6147. 9.(a) B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman, J. Chem. Soc. Dalton Trans., 2001, 2215. ; (b) G. W. Coates, J. Chem. Soc., Dalton Trans., 2002, 467. ; (c) K. Nakano, N. Kosaka, T. Hiyama and K. Nozaki, Dalton Trans., 2003, 4039. ; (d) J. Wu, T.-L. Yu, C.-T. Chen and C.-C. Lin, Coord. Chem. Rev., 2006, 250, 602. ; (e) C. A. Wheaton, P. G. Hayes and B. J. Ireland, Dalton Trans., 2009, 4832. 10.A. P. Dove, Chem. Commum., 2008, 6446. 11.R. H. Platel, L. M. Hodgson and C. K. Williams, Polymer Reviews, 2008, 48, 11. 12.C. M. Silvernail, L. J. Yao, L. M. R. Hill, M. A. Hillmyer and W. B. Tolman, Inorg. Chem., 2007, 46, 6565. 13.A. Kowalski, J. Libiszowski, A. Duda and S. Penczek, Macromolecules, 2000, 33, 1964. 14.A. Kowalski, A. Duda, S. Penczek, Macromolecules, 1998, 31, 2114. 15.(a) W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra and J. Feijen, Macromolecules, 1996, 3332. ; (b) W. M. Stevels, M. J. K. Ankone, P. J. Dijkstra and J. Feijen, Macromolecules, 1996, 29, 6132. ; (c) V. Vesna Simic, N. Spassky and L. G. Hubert- Pfalzgraf, Macromolecules, 1997, 30, 7338. ; (d) O. Poncelet, W. J. Sartain, L. G. Hubert-Pfalzgraf, K. Folting and K. G. Caulton, Inorg. Chem., 1989, 28, 263. 16.M. H. Chisholm, J. C. Gallucci and C. Krempner, Polyhedron, 2007, 26, 4436. 17.M. S. Montaudo, C. Puglisi, F. Samperi, N. Spassky, A. LeBorgne, M. Wisniewski and G. Montaudo, Macromolecules, 1996, 29, 6461. 18.A. Arbaoui, C. Redshaw, Polym. Chem., 2010, 1, 801. 19.(a) B.-T. Ko and C.-C. Lin, Macromoleculaes, 1999, 32, 8296. ; (b) B.-T. Ko and C.-C. Lin, J. Am. Chem. Soc., 2001, 123, 7973. ; (c) Y.-C. Liu, B.-T. Ko and C.-C. Lin, Macromoleculaes, 2001, 34, 6196. ; (d) H.-L. Chen, B.-T. Ko, B.-H. Huang and C.-C. Lin, Organometallics, 2001, 20, 5076. ; (e) M.-L. Hsueh, B.-H. Huang and C.-C. Lin, Macromoleculaes, 2002, 35, 5763. ; (f) T.-C. Liao, Y.-L. Huang, B.-H. Huang and C.-C. Lin, Macromol. Chem. Phys., 2003, 204, 885. ; (g) M.-L. Shueh, Y.-S. Wang, B.-H. Huang, C.-Y. Kuo and C.-C. Lin, Macromoleculaes, 2004, 37, 5155. ; (h) T.-L. Yu, C.-C. Wu, C.-C. Chen, B.-H. Huang, J. Wu and C.-C. Lin, Polymer, 2005, 5909. 20.M. H. Chisholm, C.-C. Lin, J. C. Gallucci and B.-T. Ko, Dalton Trans., 2003, 406. 21.(a) A. J. Nijenhuis, D. W. Grijpma and A. J. Pennings, Macromoleculaes, 1992, 25, 6419. ; (b) Z. Zhong, S. Schneiderbauer, P. J. Dijkstra, M. Westerhausen and J. Feijen, Polymer Bull., 2003, 51, 175. 22.B. M. Chamberlain, M. Cheng, D. M. Moore, T. M. Ovitt, E. B. Lobkovsky and G. W. Coates, J. Am. Chem. Soc., 2001, 123, 3229. 23.(a) K. B. Aubrecht, K. Chang, M. A. Hillmyer and W. B. Tolman, J. Polym. Sci. Polym. Chem., 2001, 39, 284. ; (b) K. B. Aubrecht, M. A. Hillmyer and W. B. Tolman, Macromoleculaes, 2002, 35, 644. 24.F. Qian, K. Liu and H. Ma, Dalton Trans., 2010, 39, 8071. 25.(a) Y. Kim and J. G. Verkade, Organometallics, 2002, 21, 2395. ; (b) Y. Kim, G. K. Jnaneshwara and J. G. Verkade, Inorg. Chem., 2003, 42, 1437. ; (c) Y. Kim, P. N. Kapoor and J .G. Verkade, Inorg. Chem., 2002, 41, 4834. 26.(a) A. J. Chmura, C. J. Chuck, M. G. Davidson, M. D. Jones, M. D. Lunn, S. D. Bull and M. F. Mahon, Angew. Chem. Int. Ed. Engl., 2007, 119, 2330. ; (b) A. J. Chmura, M. G. Davidson, C. J. Frankis, M. D. Jones and M. D. Lunn, Chem. Comm., 2008, 1293. 27.L. M. Alcazar-Roman, B. J. O’Keefe, M. A. Hillmyer and W. B. Tolman, Dalton Trans., 2003, 3082. 28.(a) C.-T. Chen, C.-A. Huang and B.-H. Huang, Dalton Trans., 2003, 3799. ; (b) C.-T. Chen, C.-A. Huang and B.-H. Huang, Macromoleculaes, 2004, 37, 7968. ; (c) C.-A. Huang and C.-T. Chen, Dalton Trans., 2008, 5561. 29.Z. Tang, V. C. Gibson, Eur. Polym. J., 2007, 43, 150. 30.(a) C.-X Cai, A. Amgoune, C. W. Lehmann and J.-F. Carpentier, Chem. Commun., 2004, 330. ; (b) A. Amgoune, C. M. Thomas, T. Roisnel and J.-F. Carpentier, Chem. Eur. J., 2006, 12, 169. ; (c) A. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel, and J.-F. Carpentier, Angew. Chem. Int. Ed., 2006, 45, 2782. ; (d) P. M. Castro, G. Zhao, A. Amgoune, C. M. Thomas and J.-F. Carpentier, Chem. Commun., 2006, 4509. ; (e) A. Amgoune, C. M. Thomas and J.-F. Carpentier, Macromol. Rapid Commun., 2007, 28, 693. ; (f) N. Ajellal, M. Bouyahyi, A. Amgoune, C. M. Thomas, A. Bondon, I. Pillin, Y. Grohens and J.-F. Carpentier, Macromolecules, 2009, 42, 987. ; (g) N. Ajellal, J.-F. Carpentier, C. Guillaume, S. M. Guillaume, M. Helou, V. Poirier, Y. Sarazin and A. Trifonov, Dalton Trans., 2010, 8363. ; (h) M. Bouyahyi, N. Ajellal, E. Kirillov, C. M. Thomas and J.-F. Carpentier, Chem. Eur. J., 2011, 17, 1872. 31.(a) C. Guillaume, N. Ajellal, J.-F. Carpentier and S. M. Guillaume, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 3177. ; (b) P. Brignou, M. P. Gil, O. Casagrande, J.-F. Carpentier and S. M. Guillaume, Macromolecules, 2010, 43, 8007. ; (c) N. Ajellal, C. M. Thomas and J.-F. Carpentier, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 907. 32.P. Hormnirun, E. Marshall, V. C. Gibson, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 2004, 126, 2688. 33.(a) C. K. Williams, N. R. Brooks, M. A. Hillmyer and W. B. Tolman, Chem. Commun., 2002, 2132. ; (b) C. K. Williams, L. E. Breyfogle, S. K. Choi, W. Nam, V. G. Young, Jr., M. A. Hillmyer and W. B. Tolman, J. Am. Chem. Soc., 2003, 125, 11350. 34.C.-A. Huang, C.-L. Ho and C.-T. Chen, Dalton Trans., 2008, 3502. 35.J. Ejfler, S. Szafert, K. Mierzwicki, L. B. Jerzykiewicz and P. Sobota, Dalton Trans., 2008, 6556. 36.L. Wang and H. Ma, Dalton Trans., 2010, 39, 7897. 37.(a) A. L. Borgne, V. Vincens, M. Jouglard and N. Spassky, Makromol. Chem. Macromol. Symp., 1993, 73, 37. ; (b) A. L. Borgne, M. Wisniewski and N. Spassky, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1995, 36, 217. ; (c) M. Wisniewski, A. L. Borgne and N. Spassky, Macromol. Chem. Phys., 1997, 198, 1227. ; (d) P. A. Cameron, D. Jhurry, V. C. Gibson, A. J. P. White, D. J. Williams and S. Williams, Macromol. Rapid Commun., 1999, 20, 616. ; (e) A. B. Luximon, D. Jhurry and N. Spassky, Polym. Bull., 2000, 44, 31. ; (f) D. Jhurry, A. B. Luximon and N. Spassky, Macromol Symp., 2001, 175, 67. ; (g) N. Nomura, R. Ishii, M. Akakura and K. Aoi, J. Am. Chem. Soc., 2002, 124, 5938. ; (h) Z. Tang, X. Chen, X. Pang, Y. Yang, X. Zhang and X. Jing, Biomacromolecules, 2004, 5, 965. ; (i)Z. Zhong, P. J. Dijkstra and J. Feijen, Angew. Chem., Int. Ed., 2002, 41, 4510. ; (j) Z. Zhong, P. J. Dijkstra and J. Feijen, J. Am. Chem. Soc., 2003, 125, 11291. ; (k) N. Spassky, M. Wisniewski, C. Pluta and A. L. Borgne, Macromol. Chem. Phys., 1996, 197, 2627. ; (l) T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 1999, 121, 4072. ; (m) T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 2002, 124, 1316. ; (n) T. M. Ovitt and G. W. Coates, J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 4686. ; (o) K. Majerska and A. Duda, J. Am. Chem. Soc., 2004, 126, 1026. ; (p) C. P. Radano, G. L. Baker and M. R. Smith, J. Am. Chem. Soc., 2000, 122, 1552. 38.M. H. Chisholm, J. C. Gallucci, H. Zhen and J. C. Huffman, Inorg. Chem., 2001, 40, 5051. 39.(a) H.-Y. Chen, H.-Y. Tang and C.-C. Lin, Macromolecules, 2006, 39, 3745. ; (b) W.-C. Hung, Y. Huang and C.-C. Lin, J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 6466. 40.D. J. Darensbourg, O. Karroonnirun, Inorg. Chem., 2010, 49, 2360. 41.C. Zhang and Z.-X. Wang, J. Organomet. Chem., 2008, 693, 3151. 42.(a) A. J. Davenport, D. L. Davies, J. Fawcett and D. R. Russell, Dalton Trans., 2004, 1481. ; (b) A. J. Davenport, D. L. Davies, J. Fawcett and D. R. Russell, J. Organomet. Chem., 2006, 691, 2221. ; (c) M. A. Katkova, T. V. Balashova, V. A. Ilichev, A. N. Konev, N. A. Isachenkov, G. K. Fukin, S. Y. Ketkov, and M. N. Bochkarev, Inorg. Chem., 2010, 49, 5094. ; (d) W. Oloo, P. Y. Zavalij, J. Zhang, E. Khaskin, and A. N. Vedernikov, J. Am. Chem. Soc., 2010, 132, 14400. ; (e) K.-H. Tam, J. C.Y. Lo, Z. Guo and M. C.W. Chan, J. Organomet. Chem., 2007, 692, 4750. ; (f) H. Li, Y.-J. Wu, C. Xu, R.-Q. Tian, Polyhedron, 2007, 26, 4389. ; (g) Y. D. M. Champouret, J. Fawcett, W. J. Nodes, K. Singh, and G. A. Solan, Inorg. Chem., 2006, 45, 9890. ; (h) N. Debono, M. Iglesias and F. Sanchez, Adv. Synth. Catal., 2007, 349, 2470. ; (i) H.-J. Son, W.-S. Han, J.-Y. Chun, B.-K. Kang, S.-N. Kwon, J. Ko, S. J. Han, C. Lee, S. J. Kim and S. O. Kang, Inorg. Chem., 2008, 47, 5666. ; (j) Q. Shi, S. Zhang, F. Chang, P. Hao, W.-H. Sun, C. R. Chimie, 2007, 10, 1200. ; (k) F.-T. Chen, G.-R. Tang, G.-X. Jin, J. Organomet. Chem., 2007, 692, 3435. ; (l) M. E. Bluhm, M. Ciesielski, H. Go1rls, O. Walter and M. Doring, Inorg. Chem., 2003, 42, 8878. 43.C.-Y. Li, C.-Y. Tsai, C.-H. Lin and B.-T. Ko, Dalton Trans., 2011, 1880. 44.(a) C.-T. Chen, H.-J. Weng, M.-T. Chen, C.-A. Huang and K.-F. Peng, Eur. J. Inorg. Chem., 2009, 2129. ; (b) K.-F. Peng and C.-T. Chen, Dalton Trans., 2009, 9800. 45.(a) B. P. Bandgar and S. S. Pandit, Tetrahedron Lett., 2003, 44, 2331. ; (b) A. Cwik, Z. Hell, A. Hegedus, Z. Finta and Z. Horvath, Tetrahedron Lett., 2002, 43, 3985. ; (c) H. Vorbruggen and K. Krolikiewicz, Tetrahedron, 1993, 49, 9353. ; (d) K. Kamata and I. Agata, J. Org. Chem., 1998, 63, 3113. ; (e) G. K. Jnaneshwara, V. H. Deshpande, M. Lalithambika, T. Ravindranathan and A. V. Bedekar, Tetrahedron Lett., 1998, 39, 459. ; (f) D. S. Clarke and R. Wood, Synth. Commun., 1996, 26, 1335. ; (g) B. Oussaid, J. Berlan, M. Soufiaoui and B. Garrigues, Synth. Commun., 1995, 25, 659. ; (h) A. R. Katritzky, C. Cai, K. Suzuki and S. K. Singh, J. Org. Chem., 2004, 69, 811. ; (i) P. Wipf and S. Venkatraman, Tetrahedron Lett., 1996, 37, 4659. ; (j)A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno and D. R. Williams, Org. Lett., 2000, 2, 1165. ; (k) M. E. Bunnage, S. G. Davies and C. J. Goodwin, J. Chem. Soc., Perkin Trans. 1, 1994, 17, 2385. ; (l) P. G. M. Wuts, J. M. Northuis and T. A. Kwan, J. Org. Chem., 2000, 65, 9223. ; (m) H. L. Yale and K. Losee, J. Med. Chem., 1966, 9, 478. ; (n) M. Al-Talib, H. Tashtoush and N. Odeh, Synth. Commun., 1990, 20, 1811. ; (o) V. N. Kerr, D. G. Ott and F. N. Hayes, J. Am. Chem. Soc., 1960, 82, 186. ; (p) S. Liras, M. P. Allen and B. E. Segelstein, Synth. Commun., 2000, 30, 437. ; (q) W. R. Tully, C. R. Gardner, R. J. Gillespie and R. Westwood, J. Med. Chem., 1991, 34, 2060. ; (r) K. S. Balachandran and M. V. George, Tetrahedron, 1973, 29, 2119. ; (s) T. Chiba and M. Okimoto, J. Org. Chem., 1992, 57, 1375. ; (t) R. Yang and L. Dai, J. Org.Chem., 1993, 58, 3381. 46.G. Fukata, T. Itoh and M. Tashiro, Heterocycles, 1982, 19, 1487. 47.J. C. Antilla, J. M. Baskin, T. E. Barder and S. L. Buchwald, J. Org. Chem., 2004, 69, 5578. 48.P.-Y. Michellys, J. Med. Chem., 2003, 46, 4087. 49.J. H. Espenson, Z. Zhu and T. H. Zauche, J. Org. Chem. 1999, 64, 1191. 50.(a) R. M. Fabicon, M. Parvez and H. G. Richey, Organometallics, 1999, 18, 5163. ; (b) R. M. Fabicon and H. G. Richey, Organometallics, 2001, 20, 4018. ; (c) A. Guerrero, D. L. Hughes and M. Bochmann, Organometallics, 2006, 25, 1525. 51.E. Grunova, T. Roisnel and J.-F. Carpentier, Dalton Trans., 2009, 9010. 52.(a) A. L. Johnson, N. Hollingsworth, G. K. Kohn and K. C. Molloy, Inorg. Chem., 2008, 47, 12040. ; (b) N. Hollingsworth, A. L. Johnson, A. Kingsley, G. K. Kohn and K. C. Molloy, Organometallics, 2010, 29, 3318. 53.(a) E. Schon, D. A. Plattner and P. Chen, Inorg. Chem., 2004, 43, 3164. ; (b) W.-C. Hung and C.-C. Lin, Inorg. Chem., 2009, 48, 728. 54.(a) C. Zhang and Z.-X. Wang, Appl. Organometal. Chem., 2009, 23, 9. ; (b) 洪家祺碩士論文, 2009, 中興大學化學系。 ; (c) J. D. Farwell, P. B. Hitchcock, M. F. Lappert, G. A. Luinstra, A. V. Protchenko and X.-H. Wei, J. Organomet. Chem., 2008, 693, 1861. 55.(a) B. Lian, C. M. Thomas, O. L. Casagrande, C. W. Lehmann, T. Roisnel and J.-F. Carpentier, Inorg. Chem., 2007, 46, 328. ; (b) Z. Zheng, G. Zhao, R. Fablet, M. Bouyahyi, C. M. Thomas, T. Roisnel, O. Casagrande Jr and J.-F. Carpentier, New J. Chem., 2008, 32, 2279. ; (c) A. D. Schofield, M. L. Barros, M. G. Cushion, A. D. Schwarz and P. Mountford, Dalton Trans., 2009, 85. 56.(a) W. Chen, Y. Li, Y. Cui, X. Zhang, H.-L. Zhu and Q. Zeng, Eur. J. Med. Chem., 2010, 4473. ; (b) C. Zhang and Z.-X. Wang, J. Organomet. Chem., 2008, 3151. ; (c) S.-P. Xu and H.-L. Zhu, J. Coord. Chem., 2010, 3291. ; (d) R. Sarma, D. Kalita and J. B. Baruah, Dalton Trans., 2009, 7428. 57.M.-T. Chen, P.-J. Chang, C.-A. Huang, K.-F. Peng and C.-T. Chen, Dalton Trans., 2009, 9068.
摘要: 
具不同立體障礙修飾的溴苯酚與吡唑,經由碳-氮偶合反應可得一系列的吡唑苯酚基前驅物L1H-L6H。以1.0當量的吡唑苯酚基前驅物與1.2當量的二乙基鋅試劑反應,可以成功合成藉由苯酚上的氧為架橋之雙核吡唑苯酚基鋅乙基錯化合物Zn1-Zn4及Zn6;以1.0當量的吡唑苯酚基前驅物與0.5當量的二乙基鋅試劑反應,則可以成功合成單核雙吡唑苯酚基鋅錯化合物Zn7-Zn12。所合成之鋅金屬錯合物Zn1-Zn4及Zn6與Zn7-Zn12,皆以核磁共振光譜以及元素分析數據進行鑑定,並經由X-ray單晶繞射儀之數據鑑定錯合物Zn4、Zn6、Zn11和Zn12的分子結構。於外加苯甲醇的條件下,雙核吡唑苯酚基鋅乙基錯化合物Zn1-Zn4和Zn6對於左旋乳酸交酯進行開環聚合反應,具有良好的催化活性以及狹窄的PDI數值(1.03-1.08),並且具有Living以及Immortal 的性質;然而於外加苯甲醇的條件下,單核雙吡唑苯酚基鋅錯化合物Zn7-Zn12對於左旋乳酸交酯進行開環聚合反應則是不具催化活性。催化合成之聚乳酸交酯,可經由核磁共振氫光譜以及基質輔助雷射脫附游離飛行時間質譜儀進行鑑定。

A series of pyrazolyl-phenolate ligand precursors L1H-L6H, [L1H = HPzHPhOH; L2H = HPzMePhOH; L3H = HPztBuPhOH; L4H = MePzHPhOH; L5H = MePzMePhOH; L6H = MePztBuPhOH] were synthesized via copper- catalyzed N-arylation in good yields. The reactions of L1H-L4H and L6H with 1.2 equivalent of ZnEt2 yielded [(μ-HPzHPhO)ZnEt]2 (Zn1), [(μ-HPz MePhO)ZnEt]2 (Zn2), [(μ-HPztBuPhO)ZnEt]2 (Zn3), [(μ-MePzHPhO)ZnEt]2 (Zn4) and [(μ-MePztBuPhO)ZnEt]2 (Zn6), respectively. Complexes Zn1-Zn4 and Zn6 are dimeric bridging through the phenolato oxygen atoms of the ligands. The reactions of L1H-L6H with 0.5 equivalent of ZnEt2 yielded {(HPzHPhO)2Zn} (Zn7), {(HPzMePhO)2Zn} (Zn8), {(HPztBu PhO)2Zn} (Zn9), {(MePzHPhO)2Zn} (Zn10), {(MePzMePhO)2Zn} (Zn11) and {(MePztBuPhO)2Zn} (Zn12), respectively. All these compounds were characterized by NMR spectroscopy and elemental analysis. The molecular structures of complexes Zn4, Zn6, Zn11 and Zn12 were determined by sigle-crystal X-ray diffraction techniques. Complexes Zn1-Zn4 and Zn6 show catalytic activities for the ring-opening polymerization of L-lactide in the presence of BnOH, with good molecular weight control and yields polymer with a very narrow mo-lecular weight distribution. They also exhibit both “ living ” and “ immortal ” characters. Nevertheless, Complexes Zn7-Zn12 show catalytic inactivities for the ring-opening polymerization of L-lactide in the presence of BnOH. Polymer end group was analyzed by the 1H NMR spectrum and MALDI-ToF mass spectrum.
URI: http://hdl.handle.net/11455/16919
其他識別: U0005-2806201119362100
Appears in Collections:化學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.