Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1695
DC FieldValueLanguage
dc.contributor張義鋒zh_TW
dc.contributor蔡宜壽zh_TW
dc.contributor謝其源zh_TW
dc.contributor.advisor莊書豪zh_TW
dc.contributor.author曾愷中zh_TW
dc.contributor.authorTseng, Kai-Chungen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-05T11:41:25Z-
dc.date.available2014-06-05T11:41:25Z-
dc.identifierU0005-2507200612222400zh_TW
dc.identifier.citation[1] R. J. VISSER, “Application of Polymer Light-Emitting Materials in Light-Emitting Diodes, Backlights and Displays”, Philips J. Res. 51, pp. 467-477, 1998 [2] G. Harbers, W. Timmers and W. S. Smitt,"LED Backlighting for LCD HDTV", Proc. 2nd Internation Display Manufacturing Conference, pp. 181-184, 2002 [3] R. S. West, H. Konijn, W. S. Smitt, S. Kuppens, N. Pfeffer, Y. Martynov, T. Yagi, S. Eberle, G. Harbers, T. W. Tan, C. E. Chan, ”High Brightness Direct LED Backlight for LCD-TV”, SID Intl Symp. Digest Tech Papers Book II, pp 1262-1265, 2003 [4] J. R.Culham and Yuri S. Muzychka, “Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization”, IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 24, no. 2, pp. 159-165, JUNE 2001 [5] Chu, R. C., “Heat Transfer on Electronic System,” Proceeding of the 8th International Heat Transfer Conference, San Francisco, CA, pp. 36-42, 1986. [6] Nakayama, W., “Thermal Management of Electronic Equipment in advances in Thermal Modeling of Electronic Components and System”, Bar-Cohen, A., Eds., Hemisphere, Washington, DC, Vol. 1, pp. 1-78, 1988. [7] Morrison, A.T., “Optimization of Heat Sink Fin Geometries forHeat Sinks in Natural Convection”, Inter Society Conference on Thermal Phenomena, 1992. [8] Linton, R. L., and Agonafer, D., “Coarse and Detailed CFD Modelingof a Finned Heat Sink”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 18, No. 3, pp.517-520.1995. [9] Meinders, E. R., and Hanjalic, K., “Vortex Structure and Heat transfer in Turbulent Flow over a Wall-Mounted Matrix of Cubes”, International Journal of Heat and Fluid Flow, Vol. 20, No. 2, pp.255-267, 1999. [10] Andrea, L. V., Stefano, G., and Franco, G., “Optimum Design of Vertical Rectangular Fin Arrays”, International Journal of Thermal Sciences, Vol. 38, No. 6, pp. 525-529, 1999. [11] J. A. Visser and D. j. de Kock, “Optimization of heat sink mass using the DYNAMIC-Q numerical optimization method”, Commun Numer. Meth. Enging, 18, pp.721-727, 2002. [12] 陳怡如, ”筆記型電腦CPU不等間距散熱片之最佳化設計”, 國立台灣科技大學碩士論文, pp.1-85, 2001. [13] 張志崴, ”高效率CPU散熱鰭片之ANSYS分析”, 國立海洋大學碩士論文, pp.1-72, 2002. [14] M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal Management of LEDs: Package to System”, Proc. of SPIE Vol. 5187, P64-75, 2004. [15] Ken-ichi Takatori, “Field-sequential smectic LCD with twin-gate-TFT pixel amplifiers”, Displays, 25 pp. 37–44, 2004 [16] Rich Hicks, Wes Halstead. “Flat Fluorescent Lamp Technology for LCD’s”, IEEE, pp. 630-638, 1994 [17] http://www.bosstar.com/html_cn/ccfl_lamp.htm [18]F. S. Tse, and I. E. Morse, “Measurement and Instrumentation in Engineering”, Marcel Dekker, Inc, 1989 [19] Bret A. Zahn, “Evaluating Thermal Characterization Accuracy Using CFD Codes – A Package Level Benchmark Study of IcePak™ and Flotherm®”, InterSociety Conference on Thermal Phenomena, pp.22-329, 1998. [20] Flotherm Reference Manual, Flomerics Ltd., Surrey, U.K. [21] 李季薇、韓斌、黃宏彥, “新世代大尺寸直下式LED背光模組之設計與模擬”, 國科會計畫NSC 94-2215-E-005-012, 2005. [22] 林益弘, “準系統電腦散熱流場模擬與分析 ”, 國立中興大學機械工程學系碩士論文, 2004。 [23] OPTO TECH CORPORATION FC-4040BL-B1-AA InGaN Flip Chip Blue LED原廠資料 [24] Flotherm Reference Manual, Flomerics Ltd., Surrey, U.K.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1695-
dc.description.abstract本文目的為研究高功率LED之鰭片參數分析,以期應用於液晶顯示器中。由於半導體元件在長時間的使用或過高的溫度下,都會影響其穩定性和使用壽命。因此,本實驗先利用在恆溫環境中,實際量測鰭片上之LED溫度。接著再以CFD做模擬與分析,考慮鰭片底部厚度、鰭片高度、鰭片厚度和鰭片間距四項參數,使實驗與模擬結果互相驗證。最後配合田口法,找出最佳鰭片的形狀結構。 實驗結果發現交叉排列,鰭片底部厚度為5 mm、鰭片厚度2 mm、間距6 mm及鰭片高度16 mm時,縱向的單排模組可提供最佳的散熱結果,不僅可以提高24.86 %的效能,還可減少溫度差異,避免各排鰭片溫度不一致導致的色偏問題。 最後,藉由熱阻公式計算各結合點之溫度73.1 ℃,得知LED接合點最大容許溫度為120 ℃,因此本文所設計之鰭片模組符合安全需求。zh_TW
dc.description.abstractThis dissertation is for analysing sink parameters in High Power LED backlight, targeting at application for LCD. Because the stability and lifetime of a semiconductor element can be affected by long time usage or high temperature, the best design of sink was found by using several approaches. Firstly, this experiement measured temperature for sink on LED in a constant temperature environment. Then, CFD was used for simulation and analysis, considering four parameters, thickness of base, high of sink, thickness of sink and distance between sinks. After that, results from experiment and simulation were compared for verification. Finally, Taguchi Method was used for getting the best sink structure. The experiment proved that with the following parameters, 5 mm base thickness, 2 mm sink thickness, 6 mm distance between sinks and 16 mm sink high, And crisscross design for single row sink. The best heat dissipation result can be provided. It does not only improve the efficient by 24.86 %, but also reduces The temperature difference. consequently, it avoid color washout problem which is caused by the temperature difference between different rows of sinks. In conclusion, according to the result calculated by using heat resistant formular, the temperature for each junction is 73.1 ℃, and the maximum acceptable temperature for each LED junction is 120 ℃. Hence, the sink model designed in this thesis can meet safety requirement.en_US
dc.description.tableofcontents摘要 I ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VII 符號說明 X 符號說明 X 第一章 緒論 12 1.1 前言 12 1.2 研究目的與動機 13 1.3 文獻回顧 15 第二章 背光模組、發光二極體原理 19 2.1 背光模組 19 2.1.1 背光模組種類 20 2.1.2 背光源種類 24 2.2發光二極體 25 2.2.1 LED簡介 26 2.2.2 高亮度LED 26 2.2.3 白光LED 27 第三章 基礎熱傳理論 30 3.1 散熱片熱傳效益評估 30 3.1.1 整體熱傳速率 30 3.1.2 熱阻 31 第四章 實驗方法與設備 36 4-1 實驗方法 36 4-2 實驗設備 37 4-3 實驗模型 38 4.4 實驗步驟 39 4.5 數值模式設定 41 4.5.1 基本假設 41 4.5.2 數值模擬流程 41 4.6 數值模型介紹 46 4.6.1 背光模組結構設計 46 第五章 結果與討論 47 5.1 模擬結果與量測數據比較 47 5.2 直交表的建立 48 5.3 最佳化設計 48 5.3.1田口式最佳化設計 48 5.3.2 排列方式改良 50 5.3.3 各種鰭片參數對散熱效率之影響 51 5.3.4 整體及獨立鰭片對散熱效率之影響 53 第六章 結論 56 6.1 結論 56 參 考 文 獻 58 誌謝 92 附錄A 數值方法 93zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2507200612222400en_US
dc.subjectLEDen_US
dc.subject發光二極體zh_TW
dc.subjectBacklighten_US
dc.subjectCFDen_US
dc.subjectHeat dissipationen_US
dc.subject背光模組zh_TW
dc.subjectCFDzh_TW
dc.subject散熱zh_TW
dc.titleLED背光模組散熱鰭片之模擬與分析zh_TW
dc.titleSimulation and Analysis of Heat Dissipation Sink on LED Backlighten_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.