Please use this identifier to cite or link to this item:
標題: 運用CMOS-MEMS技術製作微型熱電發電器
Fabrication of Micro Thermoelectric Generators Based on CMOS-MEMS Technique
作者: 蔡文榮
Tsai, Wen-Jung
關鍵字: Thermocouple;熱電偶;Micro Thermoelectric Generator;CMOS-MEMS;微型熱電發電器;CMOS-MEMS
出版社: 機械工程學系所
引用: [1] [2] [3] [4] [5] [6] 朱旭山,熱電材料與元件之發展與應用-熱管理技術專題,工研院雜誌,vol. 220, pp. 14-17, 2005. [7] 張復瑜,彭文陽,劉祥麟,電磁式微小發電系統技術,微/奈米製造技術專輯,vol. 282,pp. 14-17,2006。 [8] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” Pervasive Computing IEEE, vol. 4, pp. 18-27, 2005. [9] H. Kaibe, I. Aoyama, M. Mukoujima, T. Kanda, S. Fujimoto, T. Kurosawa, H. Ishimabushi, K. Ishida, L. Rauscher, Y. Hata and S. Sano, “Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency,” International Conference on Thermoelectrics, pp. 227-232, 2005. [10] M. Stordeur and I. Stark, “Low power thermoelectric generator-self-sufficient energy supply for micro systems,” 16th International Conference on Thermoelectrics, vol. 4, pp. 575-577, 1997. [11] D. M. Rowe and G. Min, “Evaluation of thermoelectric modules for power generation,” Journal of Power Sources, vol. 73, pp. 193-198, 1998. [12] H. Glosch, M. Ashauer, U. Pfeiffer and W. Lang, “A thermoelectric converter for energy supply,” Sensors and Actuators A, vol. 74, pp. 246-250, 1999. [13] M. Yajima and T. Toriyama, “Fabrication of self-supporting polysilicon thermopile,” Proceedings of the International Symposium on Micro Machine and Human Science, pp. 237-241, 2000. [14] J. G. Haidar and J. I. Ghojel, “Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric genetators,” 20th International Conference on Thermoelectrics, pp. 413-417, 2001. [15] M. Strasser, R. Aigner, M. Franosch and G. Wachutka, “Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining,” Sensors and Actuators A, vol. 97-98, pp. 535-542, 2002. [16] M. Strasser, R. Aigner, C. Lauterbach, T. F. Sturm, M. Franosch and G. Wachutka, “Micromachined CMOS thermoelectric generators as on-chip power supply,” Sensors and Actuators A, vol. 114, pp. 362-370, 2004. [17] K. Itoigawa, H. Ueno, M. Shiozaki, T. Toriyama and S. Sugiyama, “Fabrication of flexible thermopile generator,” Journal of Micromechanics and Microengineering, vol. 15, pp. 233-238, 2005. [18] I. Aoyama, H. Kaibe, L. Rauscher, T. Kanda and M. Mukoujima, “Doping effects on thermoelectric properties of higher manganese silicides (HMSs, MnSi1.74) and characterization of thermoelectric generating module using p-type (Al, Ge and Mo)-doped HMSs and n-type Mg2Si0.4Sn0.6 legs,” Japanese Journal of Applied Physics, vol. 44, pp. 4275-4281, 2005. [19] W. Glatz, S. Muntwyler and C. Hierold, “Optimization and fabrication of thick flexible polymer based micro thermoelectric generator,” Sensors and Actuators A, vol. 132, pp. 337-345, 2006. [20] N. Sato, K. Kuwabara, K. Ono, T. Sakata, H. Morimura, J. Terada, K. Kudou, T. Kamei, M. Yano, K. Machida and H. Ishii, “Monolithic integration fabrication process of thermoelectric and vibrational devices for microelectromechanical system power generator,” Japanese Journal of Applied Physics, vol. 46, pp. 6062-6067, 2007. [21] I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen and J. S. Kuo, “Development of low-cost micro-thermoelectric coolers utilizing MEMS technology,” Sensors and Actuators A, vol. 148, pp. 176-185, 2008. [22] S. M. Yang, T. Lee and C. A. Jeng, “Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process,” Sensors and Actuators A, vol. 153, pp. 244-250, 2009. [23] S. Dalola, M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli and A. Taroni, “Characterization of thermoelectric modules for powering autonomous sensors,” Instrumentation and Measurement, vol. 58, pp. 99-107, 2009. [24] S. M. Yang, T. Lee and M. Cong, “Design and verification of a thermoelectric energy harvester with stacked polysilicon thermocouples by CMOS process,” Sensors and Actuators A, vol. 157, pp. 258-266, 2010. [25] E. Kessler, U. Dillner, V. Baier and J. Muller, “A 256 pixel linear thermopile array using materials with high thermoelectric efficiency,” 16th International Conference on Thermoelectrics, pp. 734-737, 1997. [26] Z. Pinwen, I. Yoshio, I. Yukihiro, S. Yoshikazi, J. Xiaopeng and Z. Guangtian, “ Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3,” Journal of Physics: Condensed Matter, vol. 17, pp. 7319-7326, 2005. [27] K. Hasezakil, H. Tsukudal, A. Yamadall, S. Nakajimaz, Y. Kang and M. Niino, “Thermoelectric semiconductor and electrode-fabrication and evaluation of SiGe/electrode,” 16th International Conference on Thermoelectrics, pp. 599-602, 1997. [28] J. C. Peltier, “Nouvelles experiences sur la caloricite des courants electriques,” Ann. Chim, vol. 56, pp. 371, 1834. [29] 余立人,可撓性熱電能源轉換器,華梵大學機械研究所碩士論文,2009。 [30] P. H. Kao, P. J. Shih, C. L. Dai, and M. C. Liu, “Fabrication and characterization of CMOS-MEMS thermoelectric micro generators,” Sensors, vol. 10, pp. 1315-1325, 2010. [31] J. A. Chavez, J. A. Ortega, J. Salazar, A. Twb and M. J. Garcia, “Spice model of thermoelectric elements including thermal effects,” Instrumentation and Measurement Technology Conference, vol. 5, pp. 1019-1023, 2000. [32] 康淵,陳信吉,ANSYS入門,全華圖書,2007。 [33] 李德璽,多層量子井熱電與低頻率振動能源採集器之研究,國立成功大學航空太空研究所博士論文,2008。 [34] [35] 莊達人,VLSI 製造技術,高立圖書有限公司,2000。 [36] 施敏著,張俊彥譯,半導體元件物理與製作技術,科技發展政策報,1997。
本研究利用標準0.18 μm 1P6M CMOS製程技術製作微型熱電發電器,微型熱電發電器是由33組熱電偶串聯構成,透過摻雜形成p-type與n-type熱電偶;經估算熱電偶長度尺寸於長120 μm與寬8 μm時,具有最大輸出功率。微型熱電發電器的發電效率取決於熱電偶兩端的冷熱溫度差,因此為了防止冷端熱電偶的熱散失,於冷端熱電偶覆蓋二氧化矽層,以提供低導熱性與隔絕熱端熱源;並於熱端熱電偶結構連接金屬板,增加熱端部份的吸熱面積。利用Coventor ware與ANSYS模擬溫度分佈與懸浮結構的溫度梯度變化。模擬結果顯示具懸浮結構的發電器增加了0.64 K之溫度差異。微型熱電發電器需透過後製程處理來釋放懸浮結構,後製程採用非等向性乾蝕刻移除二氧化矽犧牲層與等向性乾蝕刻移除矽基板。實驗結果顯示熱電轉換效率於溫差達5 K時,有0.551%的熱能轉換電能效率,並於溫差達50 K時,有2.146%的熱能轉換電能效率。微型熱電發電器於溫差5 K時,輸出電壓為0.185 mV與輸出功率為1.07 μW;電壓因子為12.59 mV/K/cm2與功率因子為14.564 μW/K/cm2。

In this study, we present a micro thermoelectric generator fabricated by the standard 0.18 μm 1P6M (one polysilicon six metal) CMOS (complementary metal oxide semiconductor) process. The micro thermoelectric generator is composed of 33 thermocouples in series, and the thermocouples are formed by p-type and n-type polysilicons. The dimensions of the thermocouples are 120 μm length and width 8 μm, which can generate the maximum output power. Micro thermoelectric generator efficiency depends on the temperature difference between hot and cold thermocouples. In order to prevent heat-receiving in the cold part of the thermocouples, the cold part is covered with a low thermal conductivity of silicon dioxide layer to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area. Coventor Ware and AMSYS are used to simulate temperature distribution of the suspended structure. The Simulated results show that the generator with suspended plate can increase the temperature difference of 0.64 K. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the optimization efficiency of the generator is 0.551 % at the temperature difference of 5 K and 2.146 % at the temperature difference of 50 K. The experiments depict that the output voltage and output power of the micro generator are 0.185 mV and 1.07 μW, respectively, as the temperature difference is 5K. The voltage factor of the micro generator is 12.59 mV/K/cm2 and its power factor is 14.564 μW/K/cm2.
其他識別: U0005-2507201115244800
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.