Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17017
標題: Analysis of dispersion relation for spoof surface plasmons using modal expansion method
利用模態展開法分析仿表面電漿之色散關係
作者: 陳柏伸
Chen, Po-Sheng
關鍵字: spoof plasmons;仿表面電漿
出版社: 物理學系所
引用: 1. M. Born, E. Wolf, Principles of Optics (Pergamon press, 1975). 2. M. Mansuripur, “The uncertainty principle in classical optics” O plus E 45, 1364-1370 (2004). 3. J. Yakahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,”Opt. Lett. 22, 475-477 (1997). 4. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007). 5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667-669 (1998). 6. H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163-182 (1944). 7. L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. J. Thio, J.B Pendry, T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114-7 (2001). 8. J. Gmz-Rivas, C. Schotsch, P. H. Bolovar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,“ Phys. Rev. B. 68, 201306 (2003). 9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998). 10. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). Y. Chen, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14,13021-13029 (2006). 12. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805-1-4 (2006). 13. F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). 14. T. Jiang, L. Shen, X. Zhang, L. Ran, “High-order modes of spoof surface Plasmon polaritons on periodically corrugated metal surface,” Prog. Electromagn. Res. M 8 91-102 (2009). 15. I. Fernández-Domínguez, C. R. Williams , F. J García-Vidal, Martín Moreno, S. R Andrews, S.A Maier, “Terahertz surface plasmon polaritons on a helically grooved wire,” Appl. Phys. Lett. 93, 141109-1 (2008). 16. X. F. Zhang, “Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss,” J. Electromagn. Waves Appl 23, 2451-2460 (2009). 17 A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Theory of spoof plasmons in real metals,” Appl. Phys. A. 100, 375-378 (2010). 18. E. Popov, N. Bonod, S. Enoch, “Non-Bloch plasmonic stop-band in real-metal gratings,” Opt. Express 15, 6241-6250 (2007). 19. L. Shen, X. Chen, T. J. Yang., “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16, 3326-3333 (2008) . 20. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999). 21. M. P. Marder, Condensed Matter Physics (Wiley, New York, 2000). 22. D. G. Dudley, Mathematical foundations for electromagnetic theory (IEEE Press New York, 1994). 23. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “ Nanoconcentration of Terahertz Radiation in Plasmonic Waveguides,” Op. Express 16, 18576-18583 (2008). 24. K. Zhang, D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, Berlin, 2008). 25. A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering, ( Prentice, London, 1991). 26. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 2000) 27. X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802-4 (2007). 28 X. R. Huang, R. W. Peng, “General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference, “ J. Opt. Soc. Am. A 27, 718-721 (2010). 29 X. R. Huang, R. W. Peng, R. H. Fan., “ Making Metals Transparent for White Light by Spoof Surface Plasmons,” Phys. Rev. Lett. 105, 243901-4 (2010). 30 E. Popov, S. Enoch,“Mystery of the double limit in homogenisation of finitely or perfectly conducting periodic structures,” Opt. Lett. 32, 3441-3443 (2007). 31 X. F. Zhang, L. F. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105, 013704-7 (2009). 32 M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24 4493-4499 (1985). 33 H. F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec, ”Surface plasmons enhance optical transmission through subwavelength holes,”Phys. Rev. B 58, 6779-6782 (1998). 34 L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge Univ. Press, 2006).
摘要: 
本文旨在利用模態展開法,求解電磁波在平面週期變化之真實金屬結構上,其所
對應之解析型式的色散關係,當入射光為低頻(~THz)且波長遠大於結構的週期
時,上述結構所引起的現象稱仿表面電漿。
除此之外,本文比較利用等效介質法與模態展開法所推導的真實金屬凹槽板
下之色散關係,獲得一致性的結果,進而利用模態展開法,探討仿表面電漿在平
面週期結構之色散關係,其結果與有限元素法比較,獲得定性上的一致。
本文的模態展開法,雖然為仿表面電漿提出了計算上包含損耗的解決之道。
然而,僅適用於平面結構,對於仿表面電漿在皺褶週期金屬線並不適用,期盼爾
後的研究者能更進一步推廣,增進此方法於其他結構之適用性。

We proposed the modal expansion method to study the analytic dispersion relation of
electromagnetic wave propagating in periodic real metal structure. The study is limited in
the long wavelength compared to the period of metal structure. The surface plasmon-like
phenomenon is called as the spoof surface plasmons.
Comparing with the dispersion relation of real metal grooves derived by the effective
medium method, the result obtained by the modal expansion method shows good
agreement. Moreover, the qualitative consistency in dispersion relation with the finite
element method was presented for periodic arrangement of cut-through slits.
This thesis proposed a way to settle the loss of spoof surface plasmons in the planner
periodic structure. However, the modal expansion method cannot deal correctly with the
corrugated periodic metal wire. It is expected that the modal expansion method can be
further applied to other complicated structures.
URI: http://hdl.handle.net/11455/17017
其他識別: U0005-2006201113270500
Appears in Collections:物理學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.