Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1704
標題: 聚苯胺摻雜聚乙烯醇微濕度感測器
Polyaniline doping PVA Micro Humidity Sensors
作者: 林威邑
Lin, Wei-Yi
關鍵字: Micro Humidity Sensor;CMOS-MEMS;CMOS;polyaniline;polymerization;polyvinyl alcohol;polymerization;聚苯胺;聚乙烯醇;微濕度感測器
出版社: 機械工程學系所
引用: [1] 中央氣象局全球資訊網 http://www.cwb.gov.tw/ [2] 廖淑娟,“ 利用電漿沉積及後處理固定耐水親水性薄膜及其濕度感測特性研究” ,大同大學材料工程研究所碩士論文,2007。 [3] M. Matsuguchi, T. Uno, A. Yamanaka, T. Kuroiwa, T. Ogura and Yoshiro Sakai, “Improvement in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly(vinyl alcohol) film,” Sensors and Actuators B: Chemical, Vol. 97, pp. 74-80, 2004. [4] G. M. O’Halloran, P.M. Sarro, J. Groeneweg, P.J. Trimp and P.J. French, “A bulk micromachined humidity sensor based on porous silicon,” International Conference on Solid-State Sensors and Actuators, Vol. 1, pp. 563-566, 1997. [5] S. Chakraborty, K. Nemoto, K. Hara and P.T. Lai, “Moisture sensitive field effect transistors using SiO2 gate structure,” Sensors and Actuators, Vol.8, pp. 274-277, 1999. [6] S. Lee and K.J. Park, “Humidity sensitive field effect transistors,” Sensors and Actuators B: Chemical, Vol. 35, pp. 80-84, 1996. [7] M. R. Yang, and K. S. Chen, “Humidity sensors using polyvinyl alcohol mixed with electrolytes,” Sensors and Actuators B: Chemical, Vol. 49, pp. 240-247, 1998. [8] Y. Y. Qiu, C. A. Leme, L. R. Alcacer and J. E. Franca, “A CMOS humidity sensor with on-chip calibration,” Sensors and Actuators A: Physical, Vol. 92, pp. 80-87, 2001. [9] A. Schroth, K. Sager, G. Gerlach and A. Häberli, “A resonant polyimide-based humidity sensor,” Sensors and Actuators B: Chemical, Vol. 34, pp. 301-304, 1996. [10] A. Sun, Z. Li, T. Wei, Y. Li and P. Cui, “Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film,” Sensors and Actuators B: Chemical, Vol. 142, pp. 197-203, 2009. [11] F. W. Zeng, X. X. Liu, D. Diamond and K. T. Lau, “Humidity sensors based on polyaniline nanofibres,” Sensors and Actuators B: Chemical, Vol. 143, pp. 530-534, 2010. [12] L. Gu, Q. A. Huang and M. Qin, “A novel capacotove-type humidity sensor using CMOS fabrication technology,” Sensors and Actuators B: Chemical, Vol. 99, pp. 491-498, 2004. [13] S. T. McGovern, G. M. Spinks and G. G. Wallace, “Micro-humidity sensors based on a processable polyaniline blend,” Sensors and Actuators B: Chemical, Vol. 107, pp. 657-665, 2005. [14] R. J. Wu, Y. L. Sun, C. C. Lin, H. W. Chen and M. Chavali, “Composite of TiO2 nanowires and Nafion as humidity sensor material,” Sensors and Actuators B: Chemical, Vol. 115, pp. 198-204, 2006. [15] N. Parvatikar, S. Jain, C. M. Kanamadi, B. K. Chougule, S. V. Bhoraskar and M. V. N. Prasad, “Humidity sensing and electrical properties of polyaniline/cobalt oxide composites,” Journal of Applied Polymer Science, Vol. 103, pp.653-658, 2007. [16] A.G. Macdiarmid, J. C. Chiang and A. F. Richter, “Polyaniline: A new concept in conducting polymers,” Synthetic Metals, Vol. 18, pp. 285-290, 1987. [17] J. C. Chiang and A.G. Macdiarmid, “Polyaniline: Protonic acid doping of the emerraldine form to the metallic regime,” Synthetic Metals, Vol. 13, pp. 193-205, 1986. [18] A.G. Macdiarmid, L. S. Yang, W. S. Huang and B. D. Humphrey, “Polyaniline: Electrochemistry and application to rechargeable batteries,” Synthetic Metals, Vol. 18, pp. 393-398, 1987. [19] J. Rault, R. Gref, Z. H. Ping, Q. T. Nguyen and J. Neel, “Glass transition temperature regulation effect in a poly(vinyl alcohol)—water system,” Polymer, Vol. 36, No. 8, pp. 1655-1661, 1995. [20] http://www.chemteam.info/AcidBase/Bronsted-Lowry-AcidBase.html [21] J. P. Travers and M. Nechtschein, “Water effects in polyaniline: A new conduction process,” Synthetic Metals, Vol. 21, pp. 135-141, 1987. [22] E. S. Matveeva, “Residual water as a factor influencing the electrical properties of polyaniline. The role of hydrogen bonding of the polymer with solvent molecules in the formation of a conductive polymeric network,” Synthetic Metals, Vol. 79, pp. 127-139, 1996. [23] M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi and Z. Ohtaki, “Ionic conductivity and mobility in network polymers from poly(propylene oxide) containing lithium perchlorate,” Journal of Applied Physics, Vol. 57, pp. 123-128, 1984. [24] J. Huang and R. B. Kaner, “Nanofiber formation in the chemical polymerization of aniline: A mechanistic study,” Angewandte Chemie, Vol. 43, pp. 5817-5821, 2004. [25] Y. H. Cho, K. S. Dan and B. C. Kim, “Effects of dissolution temperature on the rheological properties of polyvinyl alchol solutions in dimethyl sulfoxide,” Korea-Australia Rheology Journal, Vol. 20, No. 2, pp. 73-77, 2008. [26] J. Huang, “Syntheses and applications of conducting polymer polyaniline nanofibers,” Pure and Applied Chemistry, Vol. 78, No. 1, pp. 15-27, 2006. [27] S. Xing, C. Zhao, S. Jing and Z. Wang, “Morphology and conductivity of polyaniline nanofibers prepared by ‘seeding’ polymerization,” Polymer, Vol. 47, pp. 2305-2313, 2006. [28] 胡美山,汪輝雄,石天威,“聚乙烯醇之凝膠化及其形態”, 中華民國紡織工程學會誌,頁19-30,1998。 [29] S. Chang, W. Gengchao and H. Farong, “Preparation and characterization of composites of polyaniline nanorods and multiwalled carbon nanotubes coated with polyaniline,” Journal of Applied Polymer Science, Vol. 106, No. 6, pp. 4241-4247, 2007. [30] T. Tonosaki, T. Oho, H. Shiigi, K. Isomura and K. Ogura, “Highly sensitive CO2 sensor with polymer composites operating at room temperature,” Analytical Sciences,Vol. 17, pp. 249 , 2001. [31] S. Kengo, G. Kohei, O. Kenji, N. Seiji, S. Go and Y. Noboru, “Development of FET-type CO2 sensor operative at room temperature,” Sensors and Actuators B: Chemical, Vol.102, pp 14-19, 2004. [32] I.V. Mihai and W. Jeffrey, “Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing,” Synthetic Metals, Vol.6, No.1-24, pp.401-1407, 2006.
摘要: 
本研究以半導體微機電(CMOS-MEMS)技術製作整合型複合薄膜微濕度感測器,利用化學聚合(polymerization)摻雜方式製備高分子複合薄膜,以化學聚合方式先行製作導電高分子-聚苯胺,並摻雜聚乙烯醇高分子,以完成感濕複合薄膜。在潮濕大氣中,聚苯胺薄膜經摻雜聚乙烯醇後,藉由高分子極性易與水分子鍵結特性,於高分子周圍形成分子間氫鍵,而使薄膜表面呈親水特性,以利於感濕靈敏度;當薄膜吸附水汽時,水分子中氫離子與鹽式還原態聚苯胺氧化單位醌環中的亞胺反應,而形成自由基陽離子極化鍵結,鹽式聚苯胺其導電特性在於受質子酸摻雜後,形成自由基陽離子,因此當聚乙烯醇中的氫離子吸附越多時,促使聚苯胺薄膜生成自由基陽離子濃度提高,因而影響本身薄膜電導率上升,造成電阻下降,本研究以此原理作為感測機制,並藉由匹配電路整合於晶片方式,將其訊號轉為電訊號讀出,故學生以梳指狀感測電極作為感測結構,並於感測結構下方加入多晶矽加熱器,以預防薄膜表面結露及感濕回復性,進而提高感測濕度效應特性,藉以給予熱方能將表面水汽去除,得到較佳回復性,並於結構兩旁放置溫度計以監控量測加熱環境,達到一整合式微濕度感測器。
感測區總面積為1.21 × 0.96 mm2,實驗量測部份在於濕度對其感測薄膜特性,分別探討摻雜不同比重下聚乙烯醇其反應靈敏性,以室溫25 °C下摻雜聚乙烯醇比重為35 %時為最佳,當相對濕度由30 %上升至85 %時,薄膜電阻由1274 kΩ下降至579 kΩ,總變化量為695 kΩ。整合感測電路,量測其輸出電壓變化於室溫下,由1.651 V 上升至 2.257 V,總變化量為0.606 V,感測靈敏度為10.14
mV / %RH。

This paper presents the fabrication of a micro humidity sensor integrated with a sensing circuit using complementary metal oxide semiconductor (CMOS) process. The humidity sensor is composed of a sensing film and an interdigitated electrode, and the sensing film is coated on the interdigitated electrode. The sensing film of the humidity sensor is a composite film synthesized by the polymerization method, and the film consists of polyaniline and polyvinyl alcohol (PVA). The polyaniline is doped with PVA to form the composite sensing film. When water attaches to the composite film, water molecule contacts with PVA producing intermolecular hydrogen bonds around PVA, and the hydrogen bonds increases the conductivity of the film, resulting in decreasing the film resistance. The sensing circuit is utilized to convert the resistance of the humidity sensor into the voltage output. The experimental results showed that the composite film with PAn of 65 wt% doped PVA of 35 wt%. The resistance decrease from 1274 kΩ to 579 kΩ as the relative humidity changes frome 30 % to 85 % at 25 °C. The ouput voltage varied from 1.651 V to 2.257 V as the humidity changed from 30 % to 80 %RH at 25 °C. The sensitivity of the micro humidity sensor is about 10.14 mV / %RH at 25 °C.
URI: http://hdl.handle.net/11455/1704
其他識別: U0005-2507201116352900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.