Please use this identifier to cite or link to this item:
標題: Simulations and Measurements for Luminacence Spectra of Metal-Oxide-Semiconductor Tunnelling Diodes
作者: 嚴貫恩
Yen, Kung-En
關鍵字: Luminacence;金氧半;Tunnelling Diodes;穿隧二極體;發光;頻譜
出版社: 物理學系所
引用: [1] C. W. Liu,M. H. Lee,Miin-Jang Chen,I. C. Lin,and Ching-Fuh Lin,"Room-Temperature electroluminescence from electron-hole plasmas in the metal oxide silicon tunneling diodes,、Appl . Phys . Lett . ,76,pp. 1516-1518,2000. [2] Ching-Fuh Lin, Cheewee Liu,Miin-Jang Chen,Ming-Hung Lee,and I-Cheng,Tunneling Induced lectroluminescence from Metal-Oxide-Semiconductor Structure on Silicon”,SPIE,Proceedings,Vo1. 3953, pp. 37-45, 2000. [3] M. J. Chen,J. L. Yen,J. Y. Li,J. F. Chang,S. C. Tsai,and C. S.Tsai, Stimulated emission in a nanostructured silicon pn junction diode using current injection”,APPLIED PHYSICS LETTERS VOLUME 84,NUMBER 12,PP.2163-2165(2004) [4] Martin A. Green,Jianhua Zhao,Aihua Wang,Peter J. Reece,and Michael Gal,”Efficient silicon light- emission diodes”,Nature,vol,412,p.805-808(2001) [5] L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici,G. Franzo,F. Priolo,F. Iacona,”Dynamics of stimulated emission in silicon nanocrystals”,APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 26, pp. 4636-4638(2003). [6] F Icona。G Franzo,EC Moreira,F Priolo J. Appl. Phys. 89(2001) 8354 [7] G. Franzo,V. Vinciguerra,F. Priolo Appl. Phys. A69 (1999) ;G.Franzo,et al,Appl. Phys. Lett. 76(2000) 2167. [8] R. A. Soref, “Thin Solid Films” 294 (1997) 325. [9] M. HL,C.-Y. Yu,T.-H. Guo,C,-H. Lin,and C, W. Liu ”Electroluminescence From the Ge Quantum Dot Mos Tunneling Diodes”,IEEE ELECTRON DEVICE LETTERS,VOL 27. NO. 4. APRIL 2006. [10] KITTEL 固態物理學導論 VOL.7 高麗圖書有限公司 [11] Miin-Jang Chen,Eih-Liang,Shu-Wei Chang and Ching- Fuh Lin,”Model for band-edge electronluminescence from metal-oxide-semiconductor silicon tunneling diodes”,APPLIED PHYSICS LETTERS .Vol 90 number 2 pp. 4636-4638(2003). [12] T.P.McLean,”The absorption edge spectrum of semiconductors”, in Progress in Semiconductor, edited by A.F.Gibson,vol.5 [13] H.Barry Bebb and E.W.Williams,、Photoluminescence I:theory”in semiconductor and Seminetals,edited by R.K Willardson and A.C.Beer, vol8,pp.181~320(Academic,New York,1972) [14] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductor",Physica,vol.34, no. 1, 99. 149(1967) [15] 陳敏璋,”金屬-絕緣體-半導體穿隧二極體矽發光原件之研 究”,台灣大學光電工程研究所博士論文(2001) [16] 黃昭睿,”矽奈米結構與矽發光效率之研究”,台灣大學光電 工程研究所碩士論文(2001) [17] S. M. Sze,"Physics of semiconductor devices, 2nd ed.",John Wiley & Sons, New York(1981) [18] V. Alex, S. Finkbeiner, and J.Weber, :Temperature dependence of the indirect energy gap in crystalline silicon", Journal of Applied Physics, Vol. 79, no. 9,pp.6493-6496(1996) [19] C.W.Liu,Miin-Jang Chen I.C.Lin,M.H.Lee,and Ching- Fuh Lin,”Temperature depencence of the electron- hole-plasma electroluminescence from metal-oxide- silicon tunneling diodes”,Apl vo77.No 8。
本篇論文的主軸是量測穿隧式P型金氧半二極體的電激發光頻譜,並且將陳敏璋博士的理論模型撰寫成程式後進行,將理論所計算出來的曲線與試驗測量所得的曲線進行比對,我們準備了四個樣品,在室溫下進行測量,量測的頻譜範圍從900nm~1500nm之間,所加偏壓在5Volt~10Volt之間,量測出來的外部量子效率約在10-7的尺度內,在程式模擬上,我們使用C語言進行程式撰寫,並且使用Visual Basic進行程式的包裝,以期達到友善的使用者介面,在fit實驗曲線的時候,經過多次的fit經驗,在設置參數時,要把晶格溫度設置的比實驗溫度還高,而載子生命週期隨著溫度升高而變短,晶格溫度要設置的比實驗溫度高的原因是因為當實驗進行測量時,外加在金屬端點的電壓通常會加的很大,以求得更高的外部量子效率,因此金屬端所產生的毆姆熱功率會藉由熱傳導的方式傳遞到半導體層,所以實際晶格溫度會比外界拿溫度計測量所得的數值還要高些。

The Electroluminescence (EL) spectra of MOS tunneling diodes are measured. The results are analyzed by fitting the experimental data with the exciton model developed by Dr. Ming-Jung Chen (NTU). Four samples are prepared and measured in room temperature with spectral range from 900-1500 nm under applied bias of 5-10 volts. The results of measurements show that the scale of external quantum effect is about 10-7. The simulation program is written by a combination of C-language and Visual Basic; the simulation is carried out by using C-language while, in order to achieve a “friendly interface”, the VB is used for packing the C-program.
While fitting the experimental data, we found that we need to set a temperature that is higher than the actual sample temperature. This is due to the fact that, in order to obtain a higher value of spectral peak, a large voltage is applied to the metal contact. The carriers in the semiconductor layers acquire extra energy from the ohmic thermal power delivers by the metal contact through thermal contact. The excitonic relaxation time becomes shorter as the temperature gets higher.
The simulation curves fit very well with the experimental data, so that we are able to predict experimental results for various temperatures accordingly.
其他識別: U0005-2607200714591700
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.