Please use this identifier to cite or link to this item:
標題: Long Range Correlation and Possible Electron Conduction through DNA Sequences
作者: 王聖成
Wang, Sheng-Cheng
關鍵字: long range correlation;長程相干;tight binding model;Electronic wavefunctions;緊束模型;電子波函數
出版社: 物理學系所
引用: 1. Latz, E. Analysis of cytokine-activated gene promoters. 1999 29. April [cited; Available from: 2. Watson, J.D. and F.H.C. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 1953. 171(4356): p. 737-738. 3. Paszek, E. Dogma of Molecular Biology. 2007 October 9 [cited; Available from: 4. Goffeau, A., et al., Life with 6000 Genes. Science, 1996. 274(5287): p. 546-567. 5. 許泰欣, 病毒的DNA二維步行統計分析, in 物理學系. 2003, 國立成功大學. p. 6. 6. Peng, C.K., et al., Long-range correlations in nucleotide sequences. Nature, 1992. 356(6365): p. 168-170. 7. Endres, R.G., D.L. Cox, and R.R.P. Singh, Colloquium: The quest for high-conductance DNA. Reviews of Modern Physics, 2004. 76(1): p. 195. 8. Arkin, M.R., et al., Rates of DNA-Mediated Electron Transfer Between Metallointercalators. Science, 1996. 273(5274): p. 475-480. 9. Merino, E.J. and J.K. Barton, DNA Oxidation by Charge Transport in Mitochondria. Biochemistry, 2008. 47(6): p. 1511-1517. 10. Elias, B., F. Shao, and J.K. Barton, Charge Migration along the DNA Duplex: Hole versus Electron Transport. J. Am. Chem. Soc., 2008. 130(4): p. 1152-1153. 11. Hiroaki, Y., ELECTRONIC LOCALIZATION PROPERTIES OF A DOUBLE STRAND OF DNA: A SIMPLE MODEL WITH LONG-RANGE CORRELATED HOPPING DISORDER. International Journal of Modern Physics B, 2004. 18(12): p. 1697. 12. Yoo, K.H., et al., Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Physical Review Letters, 2001. 87(19): p. 198102. 13. Ivanyuta, O., et al., Nanostructured layers from DNA, DNA:AU, DNA:C60 clusters. Biomolecular Engineering, 2007. 24(1): p. 141-142. 14. Tran, P., B. Alavi, and G. Gruner, Charge Transport along the lambda -DNA Double Helix. Physical Review Letters, 2000. 85(7): p. 1564. 15. 施奇廷, DNA的電傳輸性質初探. 物理雙月刊, 2006. 28(4): p. 654. 16. Chen, Z., et al., Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, 2002. 65(4): p. 041107. 17. Goldberger, A.L., et al., PhysioBank, PhysioToolkit, and PhysioNet : Components of a New Research Resource for Complex Physiologic Signals. Circulation, 2000. 101(23): p. e215-220. 18. Treadway, C.R., M.G. Hill, and J.K. Barton, Charge transport through a molecular pi-stack: double helical DNA. Chemical Physics, 2002. 281: p. 409-428. 19. Roth, S., One-Dimensional Metals. 1995: VCH, Weinheim. 20. Jortner, J., et al., Charge transfer and transport in DNA. Proceedings of the National Academy of Sciences, 1998. 95(22): p. 12759-12765. 21. Eley, D.D. and D.I. Spivey, Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Transactions of the Faraday Society, 1962. 58: p. 411-415. 22. Yamada, H., Localization of electronic states in chain models based on real DNA sequence. Physics Letters A, 2004. 332(Issues 1-2): p. 65-73. 23. Macia, E. and S. Roche, Backbone-induced effects in the charge transport efficiency of synthetic DNA molecules. Nanotechnology, 2006. 17(12): p. 3002-3007. 24. Wang, X.F. and T. Chakraborty, Charge Transfer via a Two-Strand Superexchange Bridge in DNA. Physical Review Letters, 2006. 97(10): p. 106602-4. 25. Ma, S., et al., Hopping conductivity of DNA sequences with off-diagonal correlations. Physica B(Condensed Matter), 2007. 391(1): p. 98-102. 26. Guo, A.-M., Long-range correlation and charge transfer efficiency in substitutional sequences of DNA molecules. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2007. 75(6): p. 061915-8. 27. Klotsa, D., R.A. Romer, and M.S. Turner, Electronic Transport in DNA. Biophysical Journal, 2005. 89(4): p. 2187-2198. 28. Palmero, F., et al., Effect of base-pair inhomogeneities on charge transport along the DNA molecule, mediated by twist and radial polarons. New Journal of Physics, 2004. 6: p. 13-13. 29. Yi, J. and B.J. Kim, Facilitated gapless conduction through DNA molecules. Physical Review B (Condensed Matter and Materials Physics), 2007. 75(3): p. 035111-5. 30. Macia, E., Electronic structure and transport properties of double-stranded Fibonacci DNA. Physical Review B (Condensed Matter and Materials Physics), 2006. 74(24): p. 245105-10. 31. Wei, J.H., et al., Trapping and hopping of bipolarons in DNA: Su-Schrieffer-Heeger model calculations. Physical Review B (Condensed Matter and Materials Physics), 2005. 72(6): p. 064304-5. 32. Nitzan, A., A Relationship between Electron-Transfer Rates and Molecular Conduction. J. Phys. Chem. A, 2001. 105(12): p. 2677-2679. 33. Soukoulis, C.M. and E.N. Economou, Fractal Character of Eigenstates in Disordered Systems. Physical Review Letters, 1984. 52(7): p. 565. 34. Biswas, P., et al., Off-Diagonal Disorder in the Anderson Model of Localization. physica status solidi (b), 2000. 218(1): p. 205-209. 35. Carpena, P., et al., Metal-insulator transition in chains with correlated disorder. Nature, 2002. 418(6901): p. 955-959. 36. Nikolić, B.K., Deconstructing Kubo formula usage: Exact conductance of a mesoscopic system from weak to strong disorder limit. Physical Review B, 2001. 64(16): p. 165303. 37. Zillmer, R., V. Ahlers, and A. Pikovsky, Coupling sensitivity of localization length in one-dimensional disordered systems. EPL (Europhysics Letters), 2002. 60(6): p. 889-895. 38. Somoza, A.M., et al., Quantum fluctuations effects in hopping. EPL (Europhysics Letters), 2005. 70(5): p. 649-655. 39. de Moura, F.A.B.F., et al., Localization properties of a one-dimensional tight-binding model with nonrandom long-range intersite interactions. Physical Review B (Condensed Matter and Materials Physics), 2005. 71(17): p. 174203-6. 40. Omerzu, A., et al., Hole Interactions with Molecular Vibrations on DNA. Physical Review Letters, 2004. 93(21): p. 218101. 41. Takada, T., et al., Direct observation of hole transfer through double-helical DNA over 100 A. Proceedings of the National Academy of Sciences, 2004. 101(39): p. 14002-14006. 42. Giese, B., et al., Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature, 2001. 412(6844): p. 318-320. 43. Roche, S., et al., Long Range Correlations in DNA: Scaling Properties and Charge Transfer Efficiency. Physical Review Letters, 2003. 91(22): p. 228101. 44. Roche, S., Sequence Dependent DNA-Mediated Conduction. Physical Review Letters, 2003. 91(10): p. 108101. 45. Sugiyama, H. and I. Saito, Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5''-Localization of HOMO of Stacked GG Bases in B-Form DNA. J. Am. Chem. Soc., 1996. 118(30): p. 7063-7068. 46. Lee, P.A. and T.V. Ramakrishnan, Disordered electronic systems. Reviews of Modern Physics, 1985. 57(2): p. 287. 47. Landauer, R., Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction. IBM Journal of Research and Development, 1957. 1: p. 223. 48. Landauer, R., Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine, 1970. 21(172): p. 863-867. 49. Anderson, P.W., et al., New method for a scaling theory of localization. Physical Review B, 1980. 22(8): p. 3519. 50. Langreth, D.C. and E. Abrahams, Derivation of the Landauer conductance formula. Physical Review B, 1981. 24(6): p. 2978. 51. Thouless, D.J., Why Landauer''s Formula for Resistance is Right. Physical Review Letters, 1981. 47(13): p. 972. 52. B&uuml;ttiker, M., et al., Generalized many-channel conductance formula with application to small rings. Physical Review B, 1985. 31(10): p. 6207. 53. Imry, Y. and R. Landauer, Conductance viewed as transmission. Reviews of Modern Physics, 1999. 71(2): p. S306. 54. Griffiths, D.J. and C.A. Steinke, Waves in locally periodic media. American Journal of Physics, 2001. 69(2): p. 137-154. 55. Stone, A.D., J.D. Joannopoulos, and D.J. Chadi, Scaling studies of the resistance of the one-dimensional Anderson model with general disorder. Physical Review B, 1981. 24(10): p. 5583. 56. Maci&aacute;, E., Physical nature of critical modes in Fibonacci quasicrystals. Physical Review B, 1999. 60(14): p. 10032. 57. Shih, C.T., Characteristic length scale of electric transport properties of genomes. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2006. 74(1): p. 010903-4. 58. Kurlandzka, A., et al., A new essential gene located on <I>Saccharomyces cerevisiae</I> chromosome IX. Yeast, 1995. 11(9): p. 885-890. 59. Anderson, P.W., Absence of Diffusion in Certain Random Lattices. Physical Review, 1958. 109(5): p. 1492. 60. Martinez, D.F. and R.A. Molina, Localization properties of driven disordered one-dimensional systems. The European Physical Journal B - Condensed Matter and Complex Systems, 2006. 52(2): p. 281-290. 61. Sedrakyan, D., et al., The Landauer resistance of a one-dimensional metal with periodically spaced random impurities. Journal of Experimental and Theoretical Physics, 1997. 84(2): p. 317-321. 62. Resta, R. and S. Sorella, Electron Localization in the Insulating State. Physical Review Letters, 1999. 82(2): p. 370. 63. Varga, I. and J. Pipek, Information length and localization in one dimension. Journal of Physics: Condensed Matter, 1994. 6(9): p. L115-L122. 64. Watanabe, T. and J. Yamasaki, Localization, resonance and non-Hermitian quantum mechanics. Vol. 314. 2002: Elsevier Science. 170-176. 65. Albuquerque, E.L., et al., Nucleotide correlations and electronic transport of DNA sequences. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2005. 71(2): p. 021910-7. 66. de Moura, F.A.B.F. and M.L. Lyra, Delocalization in the 1D Anderson Model with Long-Range Correlated Disorder. Physical Review Letters, 1998. 81(17): p. 3735. 67. Greis, N.P. and H.S. Greenside, Implication of a power-law power-spectrum for self-affinity. Physical Review A, 1991. 44(4): p. 2324. 68. Osborne, A.R. and A. Provenzale, Finite correlation dimension for stochastic systems with power-law spectra. Physica D: Nonlinear Phenomena, 1989. 35(3): p. 357-381. 69. Bohigas, O., M.J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws. Physical Review Letters, 1984. 52(1): p. 1. 70. Carpena, P., P. Bernaola-Galv&aacute;n, and P.C. Ivanov, New Class of Level Statistics in Correlated Disordered Chains. Physical Review Letters, 2004. 93(17): p. 176804. 71. Shannon, C.E., A Mathematical Theory of Communication. Bell Syst. Tech. J. , 1948. 27: p. 379. 72. R&eacute;nyi, A., Probability Theory. 1970, New York: American Elsevier Publishing Company. 73. Holste, D., I. Grosse, and H. Herzel, Statistical analysis of the DNA sequence of human chromosome 22. Physical Review E, 2001. 64(4): p. 041917. 74. Grosse, I., et al., Species independence of mutual information in coding and noncoding DNA. Physical Review E, 2000. 61(5): p. 5624. 75. Shih, C.-T., S. Roche, and R.A. Romer, Point-Mutation Effects on Charge-Transport Properties of the Tumor-Suppressor Gene p53. Physical Review Letters, 2008. 100(1): p. 018105-4.
主旨在於利用長程相干與電荷傳導性來研究細菌基因組和病毒序列,首先藉由赫斯特指數(Hurst exponent)分析以及去趨勢漲落分析(DFA)來解析DNA序列數據的長程相干。酵母菌16對染色體的赫斯特指數測量值在0.6左右,故明顯地有超擴散現象;去趨勢漲落分析也得到相同的結果。第二部分則使用緊束模型(Tight binding model)來研究DNA序列中的電荷傳輸,觀察到16對染色體之總平均傳輸係數 與隨機序列和週期序列有明顯的區別,其中發現具有較佳長程相干性的序列,其電荷傳導性也較優。研究同時也利用這模型計算局域化電子波函數,並將16對染色體與隨機序列之相同本徵能量的電子波函數作比較。最後,由粗粒化組態分布來看DNA序列的本質性。

Long range correlation analysis and charge conductivity investigation are applied to sequences in some bacteria genome and virus. DNA sequence data are analyzed via Hurst's analysis and Detrended Fluctuation Analysis (DFA) analysis. Super diffusive nature of mapping sequences are evident with measured Hurst exponent H to be around the value of 0.60 for all sequences in the Saccharomyces cerevisiae 16 chromosomes. The DFA result is consistent with the result from the Hurst analysis. Tight binding model are applied for the investigation of charge conduction through DNA sequences. The overall averaged transmission coefficients, , calculated from sixteen chromosomes are shown significantly different from values calculated from random as well as periodic sequences. Sequences had better long range correlation promise better charge conduction ability than random sequences. Delocalized electronic wave function patterns are also shown through calculations using tight binging model. Electronic wavefunctions are seen on sequences in sixteen chromosomes as compared with those obtained from random sequences on the same eigenenergies. Finally Coarse-grained configuration distribution showed the intrinsic property of DNA sequences.
其他識別: U0005-1707200814273800
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.