Please use this identifier to cite or link to this item:
標題: 調控式平行相位還原法應用於相位形貌不連續之修正與研究
Improvement of adaptive parallel phase unwrapping algorithm with physical discontinuities
作者: 黃寶賜
Haung, Pao-Szu
關鍵字: Wrapped phase;包裹相位;Phase unwrapping(PhU);physical discontinuities;相位展開;形貌不連續
出版社: 機械工程學系所
引用: [1] Burning, D. R. Herriott , J. E. Gallagher , D. P. Rosenfeld , A. D. White and D. J. Brangaccio ,”Digital Wavefront Measuring Interferometry for Testing Optical surfaces and Lenses,” Applied Optics, Vol. 13 , pp.2693, (1974) [2] M. J. Huang and Cian-Jhih Lai, “Phase unwrapping based on a parallel noise-immune algorithm,” Optics and Laser Technology, 34, 457-464 (2002). [3] J. A. Leendertz. J. Physics E, 3, 214 (1970) [4] P. Harinharan, B. F. Oreb, and T. Eiju, Appl. Opt., 26(13),2504 (1987) [5] [J. M. Huntley and H. Huntley, “Temporal phase-unwrapping algorithm for automated interferometry analysis,” Appl. Opt., Vol. 32, Issue 17, pp.3047 ( 1993 ). [6] [H. O. Salder and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt., Vol. 36, Issue 13, pp. 2770 ( 1997 ) [7] W.W. Macy Jr, “Two-Dimensional Fringe-Pattern Analysis,” Appl. Opt., Vol. 22, pp.3898, (1983) [8] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry : Two-dimensional phase unwrapping,” Radio Science, Vol. 23, No.4, pp.713 ( 1988 ). [9] N. H. Ching, D. Rosenfeld and M. Braun,“Two-dimensional phase unwrapping using a minimum spanning tree algorithm,”IEEE, 1(3), pp.355 (1992). [10] C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms,” J. Opt. Soc. Am. A, Vol. 17, Issue 3, pp.401 (2000). [11] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A, Vol. 14, Issue 10, pp.2692 (1997). [12] J. J. Gierloff, ”Phase unwrapping by regions,” SPIE, Vol.818, 2-9(1987). [13] C. D. Veuster, P. Slangen, Y. Renotte, L. Berwart and Y. Lion, ”Disc-growing algorithm for phase-map unwrapping: application to speckle interferograms,” Appl. Opt., Vol.35, Issue 2, pp.240 ( 1996 ) [14] D. C. Ghiglia, G. A. Mastin and L. A. Romero, “Cellular-automatamethod for phase unwrapping”, J. Opt. Soc. Am. A, Vol. 4, pp.276 (1987). [15] A. Spik and D. W. Robinson, ”Investigation of the cellular automata method for phase unwrapping and its implementation on an array processor,” Optics and Lasers in Engineering, 14, 25-37(1991). [16] H. Y. Chang, C. W. Chen, C. K. Lee and C. P. Hu, “The tapestry cellular automata phase unwrapping algorithm for interferogram analysis,” Optics and Lasers in Engineering, 30, 487-502(1998). [17] 陳森案, 相位重建之影像處理技術應用於光學量測之研究, 中興大學機械工程學研究所碩士論文, 中華民國九十一年七月. [18] 郭昆泯, 調控式平行相位還原法參數選擇及還原結果最佳化研究, 中興大學機械工程學研究所碩士論文, 中華民國九十四年七月.
相位展開技術,常因雜訊及測量面有自身形貌不連續(physical discontinuities)等因素造成展開錯誤。調控式平行相位還原法,對於克服雜訊有一定的能力,但處理形貌不連續問題時,若未加額外限制,則會造成遮罩錯誤搬移,最後導致發散現象產生。本文藉由加入差值門檻上界的設定,以解決原先在展開過程中,遮罩判斷在不連續交界處的錯誤判斷;另外,利用調控式平行相位還原法的參數調控特性,選取適當的參數配對,適當的調高限制條件,能有效的克服雜訊所造成的不連續問題;針對了圖形邊界及不連續交界處的資料點數過少問題,提出以遮罩平移方式,修正資料點數不足所產生的錯誤判斷。加入上述修正後的調控式平行相位還原法,對形貌不連續且含雜訊之包裹相位的處理能力,有大幅的改善。

By ordinary, inconsistencies formed by noise and physical discontinuities cause phase unwrapping failure. Adaptive parallel phase unwrapping is noise-immune algorithm, but fail to unwrap with wrapped phase with physical discontinuities ,if has not added the extra restriction. In this research, by adding upper boundary of threshold, seems able to cut off the error interchange in the boundary of physical discontinuities. Moreover, this work proposed to circumvent the problem of phase inconsistency, by adjusting the parameters partially and conception of operation mask shifting.To use the foregoing conception makes adaptive parallel phase unwrapping fast, robust and noise-immune.
其他識別: U0005-2508200621234900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.