Please use this identifier to cite or link to this item:
標題: 照光對氮化鎵奈米線元件低頻雜訊的影響
Effects of illumination on the low-frequency noise behavior of GaN nanowire devices
作者: Zong-Qing Guo
關鍵字: GaN;氮化鎵;nanowire;1/f;noise;spectrum;illumination;奈米線;低頻;雜訊;頻譜;照光
出版社: 物理學系所
引用: [1] H. Y. Cha, H. Wu, S. Chae, and M. G. Spencer, J. Appl. Phys. 100, 024307 (2006). [2] W. Wang, H. D. Xiong, M. D. Edelstein, D. Gundlach, J. S. Suehle, C. A. Richter. W. –K. Hong and T. Lee, J. Appl. Phys. 101, 044313 (2007). [4] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, Nature. 422, 599 (2003). [3] J. Yoo, Y.-J. Hong, S. J. An, G.–C. Yi, B. Chon, T. Joo, J.-W. Kim, and J.-S. Lee, Appl. Phys. Lett, 89, 043124 ( 2006). [5] S. J. Pearton and F. Ren, Adv. Mater. 12, 1571 (2000). [6] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994). [7] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002). [8] H. Y. Cha, H. Wu, M. Chandrashekhar, Y. C. Choi, S. Chae, G. Koley, and M. G. Spencer, Nanotechnology. 17, 1264 (2006). [9] M. W. Lee, H. C. Hsueh, H. M. Lin, and C.-C. Chen, Phys. Rev. B. 67, 164309 (2003). [10] H. Ouacha, M. Willander, H Y. Yu, Y W. Park, M S. Kabir, H M. Persson, L. B. Kish , and A. Ouacha, Appl. Phys. Lett. 80, 1055 (2002). [11] S. Reza, Q. T. Huynh, G. Bosman, and A. G. Rinzler, J. Appl. Phys. 99, 114309 (2006). [12] D. Tham, C.-Y. Nam, and J. E. Fischer, A. F. M. 16, 1197 (2006). [13] C. Anna, P. Laura, R. Marco, R. Thomas, M. Michel, M. Ralph, C. Raffaella, and L. Hans, Nano Lett. 6, 1548 (2006). [14] J. B. Johnson, Phys. Rev. 32, 97 (1928). [15] H. Nyquist, Phys. Rev. 32, 110 (1928). [16] C. D.Motchenbacher, and J. A. Connelly, Low-Noise Electronic System Design. A Wiley-interscience Publication (1993). [17] E. Simoen, C. Claeys, Solid-State Electronics (1996). [18] M. E. Welland, R. H. Koch, , Appl. Phys. Lett., 48,725 (1986) . [19] C .Surya , T. Y. Hsiang, Phys. Rev. B. 35, 12 (1987). [20] F. N. Hooge, Phys. Lett. 29A, 139 (1969). [21] P. G. Collins, M. S. Fuhrer, and A. Zettla, Appl. Phys. Lett.76, 894 (2000) [22] Sh. Kogan, Electronic Noise and Fluctuations In Solids. Cambridge University Press (1996). [23] A. D. V. Rheenen, G. Bosman, and R. J. J. Zijlstra, Solid-State Electron. 30, 259 (1987). [24] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981). [25] S. Ruvimo, Z. Liliental-Weber, and J. Washburn, K. J. Duxstad and E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 11 (1996). [26] M. Kang, J.-S. Lee, S.-K. Sim, H. Kim, B. Min, K. Cho, G.. -T. Kim, M. -Y. Sung, S. Kim and H. S. Han, J. J. Appl. Phys. Letter. 43, 10 (2004). [27] 魏加安, 碩士論文,利用相關頻譜量測技術探討氮化鎵奈米線低頻雜訊,中興大學物理系(2007)。
We study the excess noise of GaN nanowire devices, also the influence of illumination .The correlation technique is used to measure small electric noise and to separate the noise from the semiconductor nano wire and the contacts. When the contact resistance is smaller than the wire resistance, we find that the nanowire also exhibits the Lorentzian noise for bias current larger than 8nA. To investigate the influence of illumination, We focus a green light on the two-wire nanowire device by a confocal microscope. We find that the characteristic time of the Lorentzian noise depends on the laser power. When the intensity of the laser light is higher, the characteristic time tends to be shorter.

我們利用相關頻譜測量方法分析頻率範圍從0.1 Hz到10 kHz的四線氮化鎵奈米線元件雜訊頻譜。在量測結果中,我們發現當接觸電阻小於奈米線電阻情況時,奈米線本身的雜訊較能被量測到,而當電流加至夠大 (> 8 nA)時,我們看到氮化鎵奈米線本身也有 Lorentzian 雜訊產生。
另外我們對兩線氮化鎵奈米線元件照射不同強度的雷射光(534nm),觀察其照光後低頻雜訊特性。隨著電流增加, Lorentzian 雜訊也跟著變明顯。當照光強度增強時,Lorentzian 特徵頻率有往高頻移動趨勢,此特性應與雷射光對缺陷載子產生熱作用有關。
其他識別: U0005-2108200821390900
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.