Please use this identifier to cite or link to this item:
標題: Fabrication and characteristics of low-Tc Nb nanoSQUID by Focused ion Beam
作者: Yao, Hung-Yi
關鍵字: nanoSQUID;奈米量子干涉元件;RSJ-model;FIB;Nb film;電阻分路模型;聚焦離子束;鈮薄膜
出版社: 物理學系所
引用: [1]S.H. Hiao,S.C. Hsu,C.C. Lin,H.E. Horng,J.C. Chen, M.J. Chen,C.H. Wu,and H.C.Yang, Supercon. Sci. Technol .16, 1426 (2004). [2]S. Kuriki,A. Hayashi,T. Washio,M. Fujita, Rev. Sci. Instrum. 73, 440 (2002). [3] S. Tanaka,H. Ota,Y. Kondo,Y. Tamaki,Noguchi,M. Hasegawa, Physica C 368, 32 (2002);S. Tanaka,A. Hirata,Y. Saito, T. Mizoguchi,Y. Tamaki,I. Sakita,M. Monden, IEEE Tran.Appl. Supercon., 11, 665 (2001). [4] J.T. Jeng and H.E. Horng,and H.C. Yang, Physica C 368, 105 (2002). [5]S. Tanaka,O. Yamazaki,R. Shimizu,Y. Saito,Supercon. Sci. Technol. 12, 809 (1999). [6]Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329. [7]Tonomura A,Matsuda T, Endo J, Arii T and Mihama K 1986 Phys. Rev. B 34 3397. [8]Bardau N Bartenlian B, Chappert C, Megy R, Veillet P, Rousseaux F, Ravet M F, Jamet J P and Meyer P 1996 J. Appl. Phys. 79 5848. [9]Chang T and Chu J G 1994 J. Appl. Phys. 75 5553. [10]LedermannM, Schultz S and Ozaki M 1994 Phys. Rev. Lett. 73 1986. [11]Raufast C, Tamion A, Bernstein E, Depuis V, Tournier T, Crozes T, Bonet E and Wernsdorfer W 2008 IEEE Trans. Magn. 44 2812-5. [12]C Granata, E Esposito, A Vettoliere, L Petti and M Russo 2008 Nanotechnology 19 275501. [13]L Hao, D C Cox and J C Gallop 2009 Supercond.Sci. Technol.22 064011. [14]C. Granata,A. Vettoliere,R. Russo,E. Esposito,M. Russo, and B. Ruggiero 2009 J.Appl. Phys. 94 062503. [15]Clarke J and Braginski A(ed)2004 The SQUID Handbook Fundamentals and Technology of SQUIDs and SQUID Systems vol 1. [16]K. Enpuku,Y. Shimomura,and T. Kisu,1993 J. Appl. Phy. 73 7929. [17]Ketchen M B, Kopley T and Ling H 1984 Appl. Phys. Lett 44 1008-10. [18]Ketchen M B, Awschalom D D, Gallagher W J, Kleinsasser A W, Sandstrom R L, Rozen J R and Bumble B 1989 IEEE Trans. Magn. 25 1212-5. [19]David L Tilbrook 2009 Supercond. Sci. Technol. 22 064003. [20]Hao L, Macfarlane J C, Gallop J C, Cox D, Beyer J, Drung D and Schurig T 2008 Appl. Phys. Lett 92 192507. [21]V Bouchiat 2009 Supercond. Sci. Technol. 22 064013. [22]鐘文生,國立彰化師範大學物理學研究所碩士論文(2003)
From existing literature, we understand that the nano Superconducting Quantum Interference Device (nanoSQUID) has the ability to detect tens or hundreds of electron spin. In addition, it has a high capacity for nano-particle coupling as well as an extremely high sensitivity to detect flux. This study analyzes the characteristics of the nanoSQUID, uses the Focused ion Beam (FIB) system to create nanoSQUIDs ranging in size and in thickness of the niobium(Nb) thin film, and examines the physical properties of nanoSQUIDs.
We coated a substrate with Nb thin film; then using photo lithography, direct milling and a Focused ion Beam, we created the nanoSQUID. Using an etching material, we created weak links of various sizes, and thereby formed the electronic tunneling feature of the Josephson interface. From the R-T curves of samples that have undergone etching, we saw decreases in the critical temperature (Tc), and observed temperatures above the Tc to exhibit higher resistance than that of nano-bridges that have not been etched. Furthermore, the I-V curves corresponded with the resistive shunted junction(RSJ)-Model. When we varied the temperature conditions, we discovered that the critical current (Ic) decreased with the increase in temperature, causing the superconductivity of the samples to be disrupted. Finally, we found that adding parallel magnetic fields led to the disruption of the nanoSQUID's superconductivity, causing it to become a metal.

其他識別: U0005-0201201021113900
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.