Please use this identifier to cite or link to this item:
標題: 熵壘影響下的布朗傳輸性質─以隨機行走模型為探討對象
Properties of Brownian Transport Under the Effects of Entropy Barriers - Focused on a Random-Walk Model
作者: Wang, Cheng-Yen
關鍵字: Brownian motion;布朗運動;entropy barrier;entropic transport;random walk;熵壘;熵壘傳輸;隨機行走
出版社: 物理學系所
引用: [1] Mark Akeson, Daniel Branton, John J. Kasianowicz, Eric Brandin, and David W. Deamer. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single rna molecules. Biophysical journal, 77(6):3227-3233, 12 1999. [2] Angelo Cacciuto and Erik Luijten. Confinement-driven translocation of a flexible polymer. Physical Review Letters, 96(23):238104, June 16, 2006 2006. [3] U. Gerland, R. Bundschuh, and T. Hwa. Translocation of structured polynucleotides through nanopores. Physical Biology, 1(1):19-26, 2004. [4] R. Bundschuh and U. Gerland. Coupled dynamics of rna folding and nanopore translocation. Arxiv preprint q-bio.BM/0508004, 2005. [5] Peter Gates, Kim Cooper, James Rae, and Robert Eisenberg. Predictions of diffusion models for one-ion membrane channels. Progress in biophysics and molecular biology, 53(3):153-196, 1989. [6] Tom Chou and Detlef Lohse. Entropy-driven pumping in zeolites and biological channels. Phys.Rev.Lett., 82(17):3552-3555, Apr 1999. [7] Chengde Mao, Weiqiong Sun, Zhiyong Shen, and Nadrian C. Seeman. A nanomechanical device based on the b-z transition of dna. Nature, 397(6715): 144-146, 01/14 1999. M3: 10.1038/16437; 10.1038/16437. [8] Z. Siwy, I. D. Kosinska, A. Fulinski, and C. R. Martin. Asymmetric diffusion through synthetic nanopores. Phys.Rev.Lett., 94(4):048102, Feb 2005. [9] Alexander M. Berezhkovskii and Sergey M. Bezrukov. Optimizing transport of metabolites through large channels: Molecular sieves with and without binding. Biophysical journal, 88(3):17, 2005. [10] Andreas Schuring, Scott M. Auerbach, Siegfried Fritzsche, and Reinhold Haberlandt. On entropic barriers for diffusion in zeolites: A molecular dynamics study. The Journal of chemical physics, 116(24):10890-10894, 2002. [11] D. Dubbeldam, E. Beerdsen, T. J. H. Vlugt, and B. Smit. Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. The Journal of chemical physics, 122 (22):224712, 2005. [12] Peter H‥anggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after kramers. Rev.Mod.Phys., 62(2):251-341, Apr 1990. [13] D. Reguera, G. Schmid, P. S. Burada, J. M. Rub'i, P. Reimann, and P. H‥anggi. Entropic transport: Kinetics, scaling, and control mechanisms. Physical Review Letters, 96(13):130603, April 7, 2006 2006. [14] Robert Zwanzig. Diffusion past an entropy barrier. Journal of Physical Chemistry, 96(10):3926-3930, 1992. [15] M. H. Jacobs. Diffusion processes. Springer New York, 1967. [16] D. Reguera and J. M. Rub'i. Kinetic equations for diffusion in the presence of entropic barriers. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(6):061106, Nov 2001. [17] J.M. Rub'i. Mesoscopic non-equilibrium thermodynamics. Atti dellAccademia Peloritana dei Pericolanti, Classes di Scienze Fisiche, Matematiche e Naturali, 86. [18] I. Santamaria-Holek, D. Reguera, and J.M. Rub'i. Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics. Physical Review E, 63(5): 51106, 2001. [19] P. S. Burada, G. Schmid, D. Reguera, J. M. Rub'i, and P. H‥anggi. Biased diffusion in confined media: Test of the fick-jacobs approximation and validity criteria. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 75(5):051111, May 2007 2007. [20] PS Burada, G. Schmid, P. Talkner, P. H‥anggi, D. Reguera, and J. M. Rub'i. Entropic particle transport in periodic channels. BioSystems, 93(1-2):16-22, 2008. [21] P. S. Burada, P. H‥anggi, F. Marchesoni, G. Schmid, and P. Talkner. Diffusion in confined geometries. ChemPhysChem, 10(1), 2009. [22] N. Laachi, M. Kenward, E. Yariv, and KD Dorfman. Force-driven transport through periodic entropy barriers. Europhysics Letters, 80(5):50009, 2007. [23] D. S. Lemons. An introduction to stochastic processes in physics. Johns Hopkins University Press, 2002.
It''s a known fact that driven Brownian transport through a geometrical landscape exhibits characteristic dependence of current and diffusion upon both temperature and a driving force as well as a remarkable existence of a scaling regime. From a different standpoint, this paper has investigated a neat random-walk model aiming at uniformly-driven transports under geometrical confinement and yet subject to discrete description. The results show that in this discrete modeling, some of those representative characteristcs of entropic transport retain while the others, such as scaling behavior, don''t. In addition, two characteristics are observed which do not exist in the continuous model: a reverse dependence of current on noise strengths, and the existence of mobility optimization.

其他識別: U0005-1908200916241100
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.