Please use this identifier to cite or link to this item:
標題: Trap Levels of An AlGaN Nanowire Studied by Lorentzian Noise
作者: 洪聖席
關鍵字: Trap Level;勞倫茲雜訊;AlGaN;Nanowire;Lorentzian Noise;氮化鋁鎵;奈米線;缺陷能階
出版社: 物理學系所
引用: [1] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, Nature 422, 599 (2003). [2] J. Yoo, Y.-J. Hong, S. J. An, G.–C. Yi, B. Chon, T. Joo, J.-W. Kim, and J.-S. Lee, Appl. Phys. Lett. 89, 043124 ( 2006). [3] S. J. Pearton and F. Ren, Adv. Mater. 12, 1571 (2000). [4] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2, 101 (2002). [5] H. Y. Cha, H. Wu, M. Chandrashekhar, Y. C. Choi, S. Chae, G. Koley, and M. G. Spencer, Nanotechnology 17, 1264 (2006). [6] M. Hanzaz, A. Bouhdada, P. Gibart, and F. Omnes, J. Appl. Phys. 92, 13 (2002). [7] L. M. Li, C. C. Li, J. Zhang, Z. F. Du, B. S. Zou, H. C. Yu, Y. G. Wang, and T. H. Wang, Nanotechnology 18, 225504 (2007). [8] C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, J. Phys. D 40, 2777 (2007). [9] L. F. Eastman, V. Tilak, J. Smart, B. M. Green, and J. R. Shealy, IEEE Trans. Electron Devices, 48, 479 (2001). [10] M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993). [11] M. Marso, M. Wolter, P. Javorka, P. Kordos, and H. Lüth, Appl. Phys. Lett. 82, 633 (2003). [12] H. Nyquist, Phys. Rev. 32, 110 (1928). [13] A. Ziel, Noise: Sources, Characterization Measurement, Prentice Hall (1972). [14] J. B. Johnson, Phys. Rev. 26, 71 (1925). [15] F. N. Hooge, Phys. Lett. 29A, 139 (1969). [16] P. G. Collins, M. S. Fuhrer, and A. Zettla, Appl. Phys. Lett.76, 894 (2000). [17] A. D. V. Rheenen, G. Bosman, and R. J. J. Zijlstra, Solid-State Electron. 30, 259 (1987). [18] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981). [19] W. Götz, N. M. Johnson, M. D. Bremser, and R. F. Davis, Appl. Phys. Lett. 69, 2379 (1996). [20] D. Seghier and H. P. Gislason, J. Phys. D: Appl. Phys. 41, 095109 (2008) [21] T. L Tansley and R. J. Egan, Phys. Rev. B, 45, 10942 (1992). [22] D. Kindl, P. Hubík, J. Krìštofik, J. J. Mareš, Z. Výborný, M. R. Leys, and S. Boeykens, J. Appl. Phys. 105, 093706 (2009). [23] H. Witte, E. Schrenk, K. Flügge, A. Krtschil, M. Lisker, A. Krost, and J. Christen, Appl. Phys. Lett. 84, 18 (2004). [24] Y. S. Park, C. J. Park, C. M. Park, J. H. Na, J. S. Oh, I. T. Yoon, H. Y. Cho, and T. W. Kang, Appl. Phys. Lett. 69, 2379 (1996). [25] 魏迦安, 碩士論文,利用相關頻譜量測技術探討氮化鎵奈米線低頻雜訊,中興大學物理系(2007)。 [26] 郭宗慶, 碩士論文,照光對氮化鎵奈米線元件低頻雜訊的影響,中興大學物理系(2008)。
我們利用電子束微影製作氮化鋁鎵奈米線的鈦鋁電極,並藉由變溫量測得到奈米線的雜訊頻譜,其中室溫下的奈米線的電阻為370 kΩ而且會隨著溫度的降低而增加,我們在氮化鋁鎵奈米線的低頻雜訊裡發現到在1 / f 雜訊裡面藏有著勞倫茲雜訊,並且隨著電流的增加,勞倫茲雜訊突起的形狀會越明顯,經由勞倫茲雜訊在65 ~ 294 K隨著溫度而變化的特徵頻率,我們發現在四個溫度的區間的載子活化能,分別為547、348、282、115 meV,此項結果與氮化鋁或氮化鎵奈米線各種不同的缺陷能階相吻合。

The temperature dependence of the excess noise of AlGaN nanowire (NW) device with Ti/Al electrodes defined by e-beam lithography is studied. The resistance of the sample is 370 kΩ at room temperature and increases as the temperature decreases. The AlGaN NW exhibits large low-frequency excess noise and the power spectrum contains a Lorentzian-type noise embedded in the 1/f background. The Lorentzian- like feature becomes more prominent as I increases. Careful investigation of the temperature dependence of the characteristic time of the Lorentzian noise reveals that there are four thermally activated regions in our test temperature range (65 ~ 294 K) with activation energies of 547, 348, 282 and 115 meV, respectively ; they are related to various types of carrier traps in AlN or GaN.
其他識別: U0005-1907201014173600
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.