Please use this identifier to cite or link to this item:
標題: 撓性關節雙機械臂之模糊控制
Fuzzy Control of Dual Arm Robot with Flexible Joints
作者: 顏鵬昇
Yan, Peng-Sheng
關鍵字: fuzzy control;模糊控制;dual arm;flexible joints;雙機械臂;撓性關節
出版社: 機械工程學系所
引用: [1]L. M. Sweet and M. C. Good, “Redefinition on the robot motion control problem: effects of plant dynamics, drive system constraints, and user requirement” IEEE Conference on Decision and Control, pp. 724-732, 1984 [2]D. Li, J. W. Zu and A. A. Goldenberg, “Dynamic modeling and mode analysis of flexible-link, flexible-joint robots” Mechanism and Machine Theory, vol. 33, no. 7, pp. 1031-1044, Oct. 1998 [3]M. W. Spong, “Modeling and control of elastic joint robots” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 109, no. 4, pp. 310-319, Dec. 1987 [4]N. Hogan, “Impedance Control: an Approach to Manipulation. Part I - Theory” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-7 ,1985 [5]N. Hogan, “Impedance Control: an Approach to Manipulation. Part II - Imple-mentation” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 8-16,1985 [6]N. Hogan, “Impedance Control: an Approach to Manipulation. Part III - Appli-cation” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 17-24,1985 [7]N. Hogan, “Stable Execution of Contact Tasks Using Impedance Control” IEEE International Conference on Robotics & Automation, vol. 2, pp. 1047-1054,1987 [8]C. Ott, A. Albu-Schaffer, A. Kugi and G. Hirzinger, “Decoupling based cartesian impedance control of flexible joint robots” IEEE International Conference on Robotics and Automation, vol. 3, pp. 3101-3107, 2003 [9]M. T. Mason, “Compliance and Force Control for Computer Controlled Mani-pulators” IEEE Transaction on Systems, Man and Cybernetics , vol. SMC-11, pp. 418-432, 1981 [10]M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators” ASME Journal of Dynamic Systems, Measurement, and Control, pp.126-133, 1981 [11]J.T. Wen and K. Kenneth, “Motion and force control of multiple robotic manipulators” Automatica, vol. 28, no. 4, pp. 729-743, 1992. [12]J. K. Mills and A. A. Goldenberg, “Force and Position Control of Manipulators During Constrained Motion Tasks” IEEE Trans. in Robotics and Automation, vol. 5,no. 4, pp. 30-46 , Feb. 1989 [13]K. P. Jankowski and H. Van Brussel, “Inverse dynamics task control of flexible joint robots - I continuous-time approach” Mechanism and Machine Theory, vol. 28, no. 6, pp. 741-749, Nov. 1993 [14]J. Wittenburg, “Nonlinear Equations of Motion for Arbitary System of Interconnected Rigid Bodies” Symposium on the Dynamics of Multibody System, Munich, Germany, Pro. Published by Spring-Verlag, K. Magnus, editor , 1987 [15]J. Wittenburg and U. Wolz, “MESA VERGE: A Symbolic Program for Nonlinear Articulater Rigid Body Dynamics” ASME Design Engineering Technical Conference, 1985 [16]黃國勇,“Fuzzy Control with Self-Tuning Gains for Flexible-Joint Manipulators” 國立中興大學機械工程研究所碩士論文, 1993 [17]L.A.Zadeh, “Fuzzy sets” Information and Control, Vol. 8, 1965 [18]E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller” Int. J. Man-Machine Studies, Vol. 7 ,No. 1 ,pp.1-13 ,1975 [19]T.Heckenthaler and S. Engell, “Approximately Time-Optimal Fuzzy Control of a Two-Tank System” IEEE Contr. Syst.Mag., Vol. 8 , pp. 24~30 , Jun. 1994 [20]Songhao Piao Lining Sun, “Robat Action Acquisition by Self-Learning Fuzzy Controller” IEEE Fifth International Conference on Fuzzy System and Knowledge Discovery, 2008. [21]Heidar A. Malki, Dave Misir, Denny Feigenspan, and Guanrong Chen, “Fuzzy PID Control of a Flexible-Joint Robot Arm with Uncertainties from Time-varying Loads” IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 3, MAY 1997 [22]R. P. Paul, “Modeling, Trajectory Calculation, and Servoing of a Computer Controlled Arm” Technical Report AIM-177, Stanford University Artificial Intelli-gence Laboratory, 1972. [23]B. Markiewicz, “Analysis of the Computed Torque Drive Method and Comparison with Conventional Position Servo for a Computed-Controlled Manipulator” Jet Propulsion Laboratory Technical Memo 33-601, Mar. 1973. [24]A. Bejczy, “Robot Arm Dynamics and Control” Jet Propulsion Laboratory Technical Memo 33-669, Feb. 1974.
本文將以計算力矩法做為基礎,設計Lagrange Multiplier計算力矩法來達到位置與力量控制,並應用於撓性關節雙機械臂系統上。雙機械臂夾持物件時,可視為閉鍊的多體機械系統,以切體法斷開,可建立拘束動態方程式,並透過Lagrange Multiplier 進行力量控制。當機械臂存在參數誤差時,使用計算力矩法無法將其精確的線性化及解藕化,本文將用模糊控制的觀念,補償其因參數不確定性所產生的軌跡誤差。最後再加入增益自調的方法,期望其控制效果更佳。由電腦數值模擬的結果得知,此控制法在具有系統參數誤差的狀況下,仍可得到位置與力量追蹤誤差收斂至零。

A position-force control scheme for dual-arm flexible joints systems is proposed in this thesis. This scheme is based on Lagrange Multiplier computed torque method. Dual-arm robots clamping an object can be considered as closed-chain multi-body mechanical systems. The cut-body method can be used to derive a Lagrange Multiplier form of equation of motion. The Lagrange Multiplier computed torque method can then be used to achieve position-force control. For robot manipulators with parameter uncertainties, the computed torque method can not linearize and decouple the dynamic equation exactly. In this thesis, a fuzzy controller is used to compensate the error due to parameter uncertainties. Finally, a self tuning fuzzy controller is proposed to improve the performance of the dual-arm robots. Computer simulation results show that, under parameter uncertainties, the proposed position-force control scheme can achieve convergence of position and internal forces.
其他識別: U0005-2607201117232900
Appears in Collections:機械工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.