Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1719
DC FieldValueLanguage
dc.contributor劉進興zh_TW
dc.contributor張耀仁zh_TW
dc.contributor黃東雍zh_TW
dc.contributor.advisor林麗章zh_TW
dc.contributor.author陳碩彥zh_TW
dc.contributor.authorChen, Shuo-Yenen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-05T11:41:30Z-
dc.date.available2014-06-05T11:41:30Z-
dc.identifierU0005-2607200616200400zh_TW
dc.identifier.citation[1] T. McGeer, “Passive dynamic walking,” Int. J. of Rob. Res., 9(2):62-82, 1990. [2] T. McGeer, (1990b), “Passive walking with knees,” Proceedings of the IEEE Conference on Robotics and Automation, 2:1640-1645. [3] M. Wisse, “Three additions to passive dynamic walking: actuation, an upper body, and 3D stability,” IEEE Humanoids 2004, pp. 113-132. [4] S. H. Collins, M. Wisse, and A. Ruina, “A three-dimensional passive-dynamic walking robot with two legs and knees,” Int. J. of Rob. Res., Vol. 20, No. 7, pp. 607-615, 2001. [5] M. Wisse, A. L. Schwab, R. Q. van der Linde, and F. C. T. van der Helm, “How to keep falling forward: elementary swing leg action for passive dynamic walkers,” IEEE Trans. on Robotics, Vol. 21, No. 3, 2005, pp. 393-401. [6] F. Asano, M. Zhi-Wei Luo, and M. Yamakita, “Biped Gait Generation and Control Based on a Unified Property of Passive Dynamic Walking” IEEE Trans. on Robotics, Vol. 21, No.4, August 2005, pp. 754-762. [7] F. Asano, M. Yamakita, N. Kamamichi, and Z.-W. Luo, “A novel gait generation for biped walking robots based on mechanical energy constraint,” IEEE Trans. Robot. Autom., vol. 20, no. 3, pp. 565–573, Jun.2004. [8] F. Asano, M. Hashimoto, N. Kamamichi, and M. Yamakita, “Extended virtual passive dynamic walking and virtual passivity-mimicking control laws,” in Proc. IEEE Int. Conf. Robotics and Automation, vol. 3, 2001, pp. 3084–3089. [9] F. Asano and M. Yamakita, “Virtual gravity and coupling control for robotic gait synthesis,” IEEE Trans. Syst., Man, Cybern. A, vol. 31, no.6, pp. 737–745, Nov. 2001. [10] M. W. Spong and F. Bullo, “Controlled symmetries and passive walking,”IEEE Trans. on Automatic Control, Vol. 50, No. 7, 2005, pp. 1025–1031. [11] M. W. Spong, “Passivity-based control of the compass gait biped,” in Proc. World Congr., IFAC, 1999, pp. 19–23. [12] T. Narukawa, M. Takahashi, and K. Yoshida, “Biped locomotion on level ground by torso and swing-leg control based on passive-dynamic walking,” IEEE 2004, pp.1-6. [13] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles and their stability in a passive bipedal gait,” in Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 246–251. [14] A. Goswami, B. Thuilot, and B. Espiau, “Compass-like biped robot Part I: Stability and bifurcation of passive gaits,” INRIA, Res. Rep. 2613,1996. [15] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations, Springer-Verlag, New York, 1983. [16] B. Thuilot, A. Goswami, and B. Espiau, “Bifurcation and chaos in a simple passive bipedal gait,” IEEE Int. Conf. on Robotics and Automation, 1997. [17]石之山,“二維模型步行之探討”,中原大學應用物理研究所碩士論文,2003。 [18] K. Gajewski and B. Radziszewski, “On the stability of impact systems,” Bulletin of the Polish Academy of Sciences, 35(3-4):183-189, 1987. [19] Y. Hurmuzlu and G.D. Moskowitz, “The role of impact in the stability of bipedal locomotion,” Dynamics and Stability of Systems, 1(3), 1986. [20] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics of planar biped walkers,” IEEE Trans. on Automatic Control, Vol. 48, No. 1, pp.42-56, 2003. [21] A. Isidori, Nonlinear Control Systems: An Introduction, 3rd ed., Springer-Verlag, Berlin, Germany, 1995. [22] G. A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control, MIT Press, 2005.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/1719-
dc.description.abstract本論文針對McGeer[1]所提之依靠重力驅動走下斜坡的被動式雙足步行機械,利用Lagrange方程式和角動量守恆原理,推導其混合動力系統模式,並選擇適當的初始條件和參數,以電腦模擬雙足自然走下斜坡的動態特性。再探討仿被動式的虛擬重力與具強健性之能量追蹤等主動式控制法,獲得致動器所需之等效驅動力矩,讓該簡易機器人於平面上亦能以自然省能的方式行走。 上述仿被動式方法,需依靠試誤法及多次模擬經驗,來選擇適當的初始值與系統參數,始可達成具被動式動態行走的功能。為了使雙足機器人擁有較複雜的步行能力,因此再根據混合動力系統模式,選擇適當的Lyapunov候選函數,提出一穩定類神經適應控制器,其中包含一輻射基底類神經網路以補償模式不確定性,其參數調適律含一 修正項,經由電腦模擬,可以驗證所提控制策略的有效性。zh_TW
dc.description.tableofcontents致謝......................................................i 中文摘要.................................................ii Abstract................................................iii 目錄.....................................................iv 圖表目錄.................................................vi 符號說明.................................................ix 第一章 緒 論..............................................1 1.1研究動機...............................................1 1.2文獻回顧...............................................2 1.3論文大綱...............................................5 第二章 被動式雙足步行機器人混合系統模式推導...............6 2.1被動式雙足步行機器人之混合系統模式建立(質點模型).......8 2.2被動式雙足步行機器人之混合系統模式建立(剛體模型)......12 2.2.1 正面剛體之混合系統模式建立.........................12 2.2.2 剛體模型側面之混合系統模式建立.....................16 第三章 雙足步行機器人控制器設計..........................23 3.1質點模式之主動式步行控制設計..........................24 3.1.1虛擬重力動態步行控制法..............................26 3.1.2質點模式之能量限制控制法............................28 3.1.3質點模式之具有強健性的能量追蹤控制法................30 3.2剛體模式之主動式步行控制設計..........................32 3.2.1虛擬重力動態步行控制法..............................36 3.2.2 剛體模式之能量限制控制法...........................39 3.2.3剛體模式之具有強健性的能量追蹤控制法................42 3.2.4剛體模式之類神經適應控制器設計......................44 3.2.4.1輻射基底類神經網路(Radial Basis Neural Network)函數近似器設計...............................................44 3.2.4.2直接式適應類神經控制器設計........................48 3.2.4.3隨意軌跡追蹤公稱控制律............................48 3.2.4.4 考慮不確定性影響之含 修正穩定適應控制律推導......51 第四章 電腦模擬與結果討論................................56 4.1雙足步行機器人參數之選定..............................56 4.2被動式步行雙足機器人之主動式控制模擬結果與討論........58 4.2.1 等效力矩模擬結果...................................58 4.2.2 虛擬重力法模擬結果.................................58 4.2.3 能量限制控制法模擬結果.............................59 4.2.4 具強健性之能量追蹤控制法模擬結果...................59 4.3類神經適應控制器......................................70 4.3.1期望軌跡之選定......................................70 4.3.2系統與控制器參數之選定..............................72 4.3.3 模擬結果與討論.....................................74 第五章 結論與建議........................................92 參考文獻.................................................95 附錄.....................................................97 A.1質點模型之動力學模式推導..............................97 A.2質點模型碰撞時速度轉換方程式推導.....................101 A.3剛體模型正面之動力學模式推導.........................105 A.4剛體模型正面之碰撞速度轉換方程式推導.................109 A.5 相一(phase 1)時之運動方程式推導.....................111 A.6 相二(phase 2)時之運動方程式推導.....................115 A.7 相三(phase 3)時之運動方程式推導.....................119 A.8剛體模型側面之碰撞速度轉換方程式推導.................124zh_TW
dc.language.isoen_USzh_TW
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607200616200400en_US
dc.subjectPassiveen_US
dc.subject被動式zh_TW
dc.subjectBiped Robotsen_US
dc.subjectHybrid-System Modelingen_US
dc.subjectVirtual Gravityen_US
dc.subjectNeural-Adapt Controlen_US
dc.subject雙足步行機械zh_TW
dc.subject混合動力系統模式zh_TW
dc.subject虛擬重力zh_TW
dc.subject類神經適應控制器zh_TW
dc.title具被動步行特性雙足機器人之混合系統建模與主動式步態控制zh_TW
dc.titleHybrid-System Modeling and Active Gait Generation Control for a Passive Dynamic Walking Biped Roboten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.