Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1722
標題: 三軸奈米平台之離散時間適應控制及嵌入式ARM微控制器實現
Discrete-time Adaptive Control and Embedded ARM-Microcontroller Implementation for a Three-axis Nanopositioner
作者: 李浩誠
Li, Hao-Chen
關鍵字: Nano-positioning Stage;奈米平台;adaptive control;Embedded sytem;適應控制;嵌入式系統
出版社: 機械工程學系所
引用: [1]“Piezo Tutorial:Nanopositioning with Piezoelectrics”, Physik Instrument (PI). http://www.pi.ws/ [2] I. D. Mayergoyz, Mathematical Models of Hysteresis, Springer-Verlag, New York, 1991. [3] D. Jiles and D. Atherton,”Ferromagnetic hysteresis”, IEEE Trans. on Magnetics., Vol. 19, pp. 2183-2185, 1983. [4] Y. K. Wen, “Method for Random Vibration of Hysteretic Systems”, J. Eng. Mech. Div. ASCE 102 (EM2), pp. 249-263, 1976. [5] W. Guo and T. S. Low, “Modeling of a Three-Layer Piezoelectric Bimorph Beam with Hysteresis”, Journal of Microelectromechanical Systems, Vol. 4, No. 4, pp. 230-237, 1995. [6] P. Ge and M. Jouaneh, “Tracking control of a piezoceramic actuator”, IEEE Trans. Control Syst. Technol., Vol. 4, No. 3, pp. 209-216, 1996. [7] G. Song, J. Zhao, X. Zhou., and J. A., “Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model”, IEEE/ASME Trans. on Mechatronics, Vol. 10, No. 2, pp. 198-209, 2005. [8] B. M. Chen, T. H. Lee, C.-C. Hang, Y. Guo and S. Weerasooriya,“An almost disturbance decoupling robust controller design for A piezoceramic bimorph actuator with hysteresis”, IEEE Trans. on Control Syst. Thchnol., Vol. 7, No. 2, pp. 160-173, 1999. [9] 黃恆庭,”壓電致動器磁滯模型之觀測器”,逢甲大學自動控制工程學系,碩士論文,民國九十年。 [10] H. Ying,“Analytical Analysis and Feedback Linearization Tracking Control of the General Takagi-Sugeno Fuzzy Dynamic Systems”, IEEE Trans. Systems, Man, and Cybernetics-Part C:Applications And Reviews, Vol. 29, No. 2, pp. 290-298, 1999. [11] 陳慶韓,”三軸奈米平台之適應控制與相關機電實現技術”,國立中興大學機械工程學系,碩士論文,民國九十三年。 [12] 張柏翌,”三軸奈米平台之穩定適應控制:以ALTERA DSP發展板實現”,國立中興大學機械工程學系,碩士論文,民國九十四年。 [13] S. E. Lyshevski, MEMS and NEMS:Systems,Device, and Structures, CRC Press, New York, 2002. [14] S. Nakamura, Numerical Analysis and Graphic Visualization with MATLAB, Ed2., Prentice Hall, 2002. [15] J. T. Spooner, M. Maggiore, R. Ord
摘要: 
本論文先根據三軸奈米平台含磁滯效應的系統模式,使用尤拉法建立其離散時間系統模式,再根據離散時間模式設計適應控制器,其中含一估測磁滯變數的觀測器。設計控制策略時,針對系統參數辨識誤差、不確定性和耦合效應,亦包含一模糊函數近似器加以補償,其參數調適律使用正常化梯度下降法,整體閉迴路系統的穩定性則使用Lyapunov穩定理論加以探討。本論文除了進行電腦模擬分析研究外,並使用ARM微控制器整合週邊數位類比電路構成的嵌入式系統(embedded system)實現控制策略,以驗證該控制策略的性能與有效性。
URI: http://hdl.handle.net/11455/1722
其他識別: U0005-2607200616524300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.