Please use this identifier to cite or link to this item:
標題: CuS量子點的合成及其在半導體敏化太陽能電池之應用
Synthesis of CuS quantum dots for semiconductor-sensitized solar cell
作者: 張恩竣
Chang, En-Chun
關鍵字: 硫化銅;CuS;量子點;敏化太陽能電池;連續離子層沉積法;二氧化鈦;二氧化錫;氧化鋅;多硫電解液;quantum dots;dye-sensitized solar cells;SILAR;TiO2;SnO2;ZnS;polysulfide
出版社: 物理學系所
引用: 1.Yong Xu and Martin A.A. Schoonen , The absolute energy positions of conduction and valence bands of selected semiconducting minerals(2010) 2.James G. Radich,Ryan Dwyer,and Prashant V. Kamat , Cu2S Reduced Graphene Oxide Composite for High-Efficiency Quantum Dot Solar Cells. Overcoming the Redox Limitations of S_2-/ S_n 2- at the Counter Electrode(2011) 3.K. M. Gadave nd C. D. Lokhande , Formation of Cux S films through a chemical bath deposition process(1993) 4.Titipun Thongtem, Characterization of copper sulfide nanostructured spheres and nanotubes synthesized by microwave-assisted solvothermal method(2009) 5.Qiaofeng Han , Junwu Zhu,Wenchao Zhu, Xujie Yang, Lude Lu, Xin Wang. Spontaneous growth of copper sulfide nanowires from elemental sulfur in carbon-coated Cu grids(2009) 6.S.D. Sartale, C.D. Lokhande, Growth of copper sulphide thin films by successive ioniclayer adsorption and reaction (SILAR) method(2000) 7.Amanda Bui, Khiem Vu, and Kenneth J. Balkus, Jr, Low-Temperature Synthesis of Copper(II) Sulfide Quantum Dot Decorated TiO 2 Nanotubes and Their Photocatalytic Properties(2010) 8.Aswani Yella, et al, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)−Based Redox Electrolyte Exceed 12 Percent Efficiency, Science(2011) 9.Michael M. Lee,et al, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites Science(2012) 10.姜辛, 透明導電氧化物薄膜 高等教育出版(2008) 11.張正華, 有機與塑膠太陽能電池 五南出版股份有限公司(2007) 12.高貴生, 國立中興大學物理所博士論文 (2011) 13.林美佳, 國立中興大學奈米科學研究所碩士論文 (2011)
本研究主要將硫化銅量子點敏化太陽能電池(Copper sulfide quantum dots,CuS QDs)效率最佳化,有鑑於硫化銅文獻記載據有高能隙,在轉換效能方面也有不錯的開路電壓與短路電流表現及製作容易、容易取得、對環境低毒害;故本實驗採硫化銅量子點作為量子點敏化太陽能的光電極,並採用以連續離子層沉積反應法(Successive Ionic Layer Adsorption and Reaction method-SILAR)方式來製作;其簡易步驟如下:1.清洗FTO, 2.塗佈異丙氧鈦,作為二氧化鈦(TiO₂)的底層,3.光電極備製(塗佈TiO₂薄膜電極、散射層), 4.對電極備製(鉑對電極使用六氯铂酸溶劑加無水酒精),而金對電極是使用濺鍍機製作, 5.電解液備製採多硫電解液, 6.光電極製作, 7.光電極退火, 8.成長硫化鋅, 9.光電極與對電極封裝, 10.灌電解液量測,即完成硫化銅量子點敏化太陽能電池實驗;而最佳化為SILAR第13Cycle,最高轉換效0.88%,開路電壓0.16 V,短路電流26.7mA/cm2,填充因子20.6%,確認Cycle最佳化後將鉑對電極改用金對電極電池可達轉換效率約為1.04%;最後使用SnO2換成TiO2確認是否提升效能。

The main purpose of the study is the optimization synthesis of copper sulfide (CuS) quantum dots (QDs) as sensitizers for solar cells (DSCs). In the literature review, CuS has an ideal energy gap and a stable open circuit voltage for applications in solar energy conversion. Cu2-xS is easy to make and has a low impact on environment. Thus, the present experiment uses CuS QDs as a sensitized solar cell photo-electrode. CuS was prepared using the successive ionic layer adsorption and reaction (SILAR) method. The first SILAR step was to wash the fluorine-doped tin oxide (FTO) glass, then titanium (IV) isopropoxide (TIIP) was spin coated on the glass, forming an under layer of TiO2. Afterwards, the FTO was put into an oven for a period of time, followed by coating a TiO2 layer (thickness 10 μm, size 20 nm) and a scattering layer (thickness 3μm, size 350~450 nm). Annealing completed the final step of the processing. The Pt counterelectrode was prepared by dripping a solution of hydrogen hexachloroplatinate (IV) hydrate on the FTO surface, followed by post heating. Au counterelectrode was also prepared by sputtering deposition. Polysulfide was used as the electrolyte. Zinc sulfide (ZnS) was coated on the QDs as the passivation layer. Lastly, a parafilm was used to package the photo-electrode to the counter-electrode. The optimization synthesis of CuS QDDSC process was obtained in samples with thirteen SILAR cycles. The optimal cells, using a Pt count-electrode, has a power conversion efficiency of 0.88 %, an open circuit voltage 0.16 V, a short- circuit current 26.7 mA /cm2 and a fill factor of 20.6 %. The power conversion efficiency improves to 1.04 % if the Pt counter-electrode is replaced by an Au electrode. Finally, use the SnO2 replaced TiO2 to verify improve performance.
其他識別: U0005-2101201315253100
Appears in Collections:物理學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.