Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1724
標題: 奈米通道擴散係數量測與控制
Measurement and control of diffusivity in nanochannels
作者: 蔡雨澤
Tsai, Yu-Tze
關鍵字: Silicon nanopore;矽基奈米孔洞擴散係數量測;Diffusivity measurement;Diffusivity control;擴散係數控制
出版社: 機械工程學系所
引用: [1] http://zh.wikipedia.org/wiki/%E5%A5%88%E7%B1%B3%E7%A7%91%E6%8A%80. [2] http://www.shs.edu.tw/works/essay/2006/03/2006033117564347.pdf. [3] Z. Siwy, and A. Fulinski: Am. J. Phys. 72, 567, 2004. [4] H. Uno, Z. L. Zhang, M. Suzui, R. Tero, Y. Nonogaki, S. Nakao, S.Seki, S.Tagawa, S. Oiki, and T. Urisu: Jpn. J. Appl. Phys. 45, L1334,2004. [5] S. Howorka, S. Cheley, and H. Bayley: Na. Biotechnol. 19, 636, 2001. [6] A. F. Sauer-Budge, J. A. Nyamwanda, D. K. Lubensky, and D.Branton: Phys. Rev.Lett. 90, 238101, 2003. [7] S. M. Bezrukov, I. Vodyanoy, and V. A. Parsegian: Nature 390,279-291, 2003. [8] A. Aksimentiev, J. B. Heng, G. Timp, and K. Schulten; Biophys. J. 87, 2086, 2004. [9] W. Romer, and C. Steinem: Biophys. J. 86, 955, 2004. [10] A. Zemel, D. R. Fattal, and A. Ben-Shaul: Biophys. J. 84, 2242,2003. [11] M. Akenson, D. Branton, J. J. Kasianowicz, D. Brandin, and D. W. Deamer: Biophys. J. 77, 3227, 1999. [12] S. Howorka, S. Cheley, and H. Bayley: Nat. Biotechnol. 19, 636, 2001. [13] A. Meller, L. Nivon, and D. Branton: Phys. Rev. Lett. 86, 3435,2001. [14] R. Gaspaac, D. T. Mitchell, C. R. Martin: Electrochim. Acta 49, 847, 2004. [15] J. Mathé, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller: Proc. Nat. Acad. Sci. USA 102, 2377, 2005 [16] G. T. A. Kovacs: Micromachined Transducers Sourcebook (McGraw-Hill: NewYork 2000) p.706. [17] M. Sato, A. Yamada, and R. Aogaki: Jpn. J. Appl. Phys. 42, 4520, 2003. [18] D. Strock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone,and G. M. Whitesides: Science 295, 647, 2002. [19] W. E. Alley and B. J. Alder: Phy. Rev. Lett. 43, 653, 1979. [20] M. H. Lee: Phy. Rev. Lett. 85, 2422, 2000. [21] B. Ph. van Milligen, P. D. Bons, B. A. Carreras, and R. Sánchez:Eur. J. Phys. 26, 913, 2005. [22] C. T. Culbertson, S. C. Jacobson, M. Ramsey, Talanta 56, 365,2002. [23] Y. Walbroehl, J. W. Jorgenson, J. Microcolumn Separations 1,41, 1989. [24] Y. J. Yao, S. F. Y. Li, J. Chromatograhic Science 32, 117,1994. [25] C. T. Culbertson, Ph.D. Dissertation thesis, University Of North Carolina, Chapel Hill,1996. [26] C. Wu, Z. Jin, H. Ma, S. Lin, Y. Wang, J. Micromechanics and Microengineering 16, 2323, 2006. [27] 黃義佑“微機電系統原理與應用,”高立圖書有限公司,民 96. [28] 莊達人,“VlSI 製造技術,”高立圖書有限公司,民 92年. [29] 武秀菁, 汪若文, 林美吟, “微機電系統技術與應用,”國科會精儀 中心,92年. [30] K. A. Snyder, Concrete Science and Engineering 3, 216, 2001. [31] G. L. Fain: Molecular and Cellular Physiology of Neurons (Harvard University Press, New York 1999) p. 63. [32] R. B. Schoch, H. V. Lintel, and P. Renaud, Physics of fluids 17, 100604, 2005. [33] J. F. Smalley, M. D. Newton, and S. W. Feldberg: Electrochem. Commun. 2, 832,2000. [34] C. A. Gervasia, M. E. Folquerc, A. E. Vallejob, and P. E.Alvarezd, Electrochimica Acta 50, 1113, 2005. [35] R. F. Probstein, Physicochemical Hydrodynamics (Wiley, New York 1994) 2nd ed.,p.26. [36] D. Q. Li, Microfluid Nanofluid, 1, 1, 2004. [37] D. Monk, Controlled structure release for silicon surface micr-omachin -ing, Ph.D. thesis, University of California, Berkeley 164-180, 1993. [38] G. A. Bozhikov, G. D. Bontchev, P. I. Ivanov, A. N. Priemyshev, O. D.Maslov, M.V. Milanov, and S. N. Dmitriev, J. of Radioanalytical and Nuclear Chemistry 258,645, 2003. [39] T. Shedlovsky, A. S. Brown, D. AMacinnes, Trans. Electrochem. Soc. 66, 1934. [40] C. L. Gardner, W. Nonner, and R. S. Eisenberg, J. Computational Electronics 3, 25-31, 2004.
摘要: 
依Fick’s law,離子會由高濃度區往低濃度區擴散,主要是利用濃度梯度之擴散作用。本研究提出即時量測奈米孔洞之擴散電流、奈米孔洞二端之離子濃度,估測擴散係數與離子濃度梯度之簡單方法,並進一步製作奈米孔洞薄膜,以奈米孔洞薄膜隔離兩化學槽之溶液,量測帶電粒子於奈米孔洞之擴散係數。
奈米孔洞薄膜分別為陽極氧化鋁膜(AAO)與單奈米孔矽基薄膜兩種,初期先製作陽極氧化鋁膜,以不同濃度與同濃度薄膜面積不同進行量測擴散係數。AAO薄膜直徑為10mm,兩端化學槽之溶液初始濃度為0.25M和1M之KCl溶液,其擴散係數為1.14+-0.01*10-9m2/sec;當初始濃度之高濃度增加為2M,其擴散係數為3.04*10-9m2/sec,較高的濃度比(c1/c2)會有較明顯的滲透現象,可以提供一個更大的驅動力使得鉀離子經由奈米通道,由高濃度往低濃度方向移動;實驗結果亦得知當薄膜直徑改變後,其擴散係數並未有太大影響,亦驗證本研究之推論,若AAO中之奈米通道均勻分佈,可假設孔洞大小應大致相同,故AAO的擴散係數相當於單個奈米通道的擴散係數。
本研究亦以陽極氧化結合背部濕蝕刻方式製作高深寬比之單奈米孔矽基薄膜,進行擴散係數量測。由於單奈米孔矽基薄膜是仿效場效電晶體,可施加不同閘極偏壓於矽基薄膜上來控制擴散係數;當施加正偏壓時由於電雙層表面為負離子,當鉀離子通過奈米通道時會被電雙層吸引,導致擴散係數下降,當施加負偏壓時,電雙層表面則是正離子,使得鉀離子通過奈米通道時,而被靜電斥力侷限於孔洞中央,使通道間之布朗運動效應減少,讓離子能夠更有效通過奈米孔洞,導致擴散係數上升。由於奈米孔洞中之物質為溶液,而閘極亦透過半導體n-type材料與溶液連結,故此裝置或可稱Metal- Semiconductor-Solution Field Effect Transistor (MSSFET)。若工作在linear region,則擴散係數大致與閘極偏壓相關,亦即若初始濃度差夠大則奈米孔洞之擴散係數可以閘極偏線性控制。

Diffusion is the ruling manner of the migration of ions through a nanochannel. Diffusion due to concentration gradient allows particles to travel from higher- concentration areas to lower-concentration areas. In this study, a simple principle for the detection of the diffusivity of nanoparticles in a nanochannel based on the Fick's first law is proposed.
To verify the proposed diffusion coefficient measuring method, both aluminum oxide membrane (AAO) membranes and silicon membranes having single pore are used as the membrane to separate two analytes with different concentrations. At the first stage, anodic aluminum oxide (AAO) membranes replace membranes with single nanochannels for the measurement of the diffusivity. An electrochemical bath is built that can hold an AAO membrane separating vessels with different ion concentrations. The difference in ionic concentration across channels can be estimated in terms of the difference in conductance as measured using an electrochemical analyzer. The diffusivity in the nanochannel can be estimated by simply plotting the natural logarithmic value of the electrolyte conductance difference across the nanochannel versus time and then calculating the slope. The average diffusivity in an AAO membrane with a nanopore diameter of around 90 nm and a thickness of 60μm was measured to be 1.14+-0.01*10-9m2/sec.
The back-side track etching is then used to fabricate a nanopore on n-type silicon substrates. A metal-semiconductor-solution field-effect transistor (MSFET) that is analogous to a metal-oxide semiconductor field-effect transistor (MOSFET) with structure variations is implemented to control the diffusion current. When a positive gate voltage is applied, negative charges are attracted to the surface of the double-layer in the nanopore. Accordingly, those cations travelling through the nanopore are dragged to the negative charges; hence the diffusion coefficient is decreased. On the contrary, a negative gate voltage will push the cations and confine them to the center part of the nanopore such that a more efficient diffusion is achieved. i.e. The diffusion coefficient is increased.
URI: http://hdl.handle.net/11455/1724
其他識別: U0005-2607201119535400
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.