Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17251
標題: 利用轉換光學與馬克士威魚眼透鏡實現多功能光波導元件
Implementation of multi-functional optical waveguide devices using the transformation optics and Maxwell fish-eye lens.
作者: 鄭威嘉
Cheng, Wei-Chia
關鍵字: 座標轉換;Coordinate transformation;馬克士威魚眼透鏡;元件平坦化;多功能光波導元件;Maxwell’s fish-eye lens;device flattened;multi-functional optical waveguide devices
出版社: 物理學系所
引用: [1]. Qi Wu, J. P. Turpin and D. H. Werner, Integrated photonic systems based on transformation optics enabled gradient index devices, Light: Science & Applications 1, e38 (2012) [2]. T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An Optical ‘‘Janus’’ Device for Integrated Photonics, ”Adv. Mater., 22, 2561–2564 (2010) [3]. .J. B .Pendry, D. Schurig and D. R. Smith, “Controlling Electromagnetic Fields, ”Science 312(5781), 1780-1782 (2006). [4]. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74(3), 036621(2006). [5]. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr,and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [6]. M. Rahm, D. Schurig, D. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry,“Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostruct.:Fundam. Applic. 6(1), 87–95 (2008). [7]. Y. Luo, H. Chen, J. Zhang, L. Ran and J. A. Kong, “Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77(8), 125127–085111 (2009). [8]. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903–063907 (2008). [9]. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111(2008). [10]. J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B.-I. Wu, L. Ran, and J.A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008). [11]. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Coordinate transformation based design of confined metamaterial structures,” Phys. Rev. B 79(8), 085103–085111 (2009). [12]. Nathan I. Landy and Willie J. Padilla, "Guiding light with conformal transformations," Opt. Express 17 (17), 14872-14879 (2009). [13]. D. H. Kwon and D. H. Werner , Transformation optical designs for wave collimators,flat lenses and right-angle bends, New Journal of Physics 10 115023 (2008). [14]. David R. Smith,* Yaroslav Urzhμmov, Nathan B. Kundtz,, and Nathan I. Landy, Enhancing imaging systems using transformation optics, Optics Express 18(20),21238 , 21238-21251 (2010) [15]. John Hunt,* Gyushik Jang, and David R. Smith, Perfect relay lens at microwave frequencies based on flattening a Maxwell lens, J. Opt. Soc. Am. B 28(8) ,2025-2029 ( 2011)
摘要: 
本文主要利用馬克士威魚眼透鏡折射率分布及幾何平坦化實現多功能光波導元件。使用圓球形梯度型折射率分布與矩形化座標轉換可以使原本僅具單向功能傳統魚眼透鏡同時具有波束位移器與聚焦型透鏡的雙功能元件,藉由調控各種材料參數與元件幾何結構,我們成功地改善馬克士威魚眼透鏡的工作範圍及效能。首先,我們討論平坦型魚眼透鏡兩個軸向功能之效率與工作範圍,接著討論在不同材料中平坦型魚眼透鏡之輸出效果,最後將兩種軸向功能組合起來,變為多功能性光學元件,並分析兩個軸向功能組合時彼此的影響,藉由將此多功能特性整合在同一元件中,有效地縮小元件尺寸,對未來元件積體化提供一有效的解決方法。

In this study the multi-functional optical waveguide devices are implemented by using the Maxwell’s fish-eye lens and geometry flattened. Applying the concept of coordinate transformation and spherical gradient index profile, the Maxwell’s fish eye lens originally with only single focusing function is flattened to form a multi-functional devices having beam shifter and focusing lens simultaneously. By adjusting material parameters and geometry structures of the Maxwell’s fish eye lens, we improve successfully the working range and the performances of the devices. First, we discuss the efficiency and the working range along the horizontal and vertical directions. Subsequently, we analyze the effect that the device works in various materials. Finally, we combine the two functions into a multi-functional optical waveguide devices and analyze the influence resulted from the combination of the two functions. Through integrating the multi-functional device into a single structure, we reduce efficiently the device size and offer a solution method for future integrated optical components.
URI: http://hdl.handle.net/11455/17251
其他識別: U0005-2607201313270600
Appears in Collections:物理學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.