Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/17252
標題: 化學氣相沉積石墨烯的電傳輸特性
Electrical conduction properties of chemical vapor deposited graphene
作者: 謝昀璉
Hsieh, Yun-Lien
關鍵字: 化學氣相沉積;chemical vapor deposition;石墨烯;電傳輸;graphene;electrical conduction
出版社: 物理學系所
引用: [1] S. Gustavsson, R. Leturcq, T. Ihn, K. Ensslin, and A. C. Gossard, "Electrons in quantum dots: One by one," Journal of Applied Physics, vol. 105, p. 122401, 2009. [2] S. Fujii, T. Tanaka, Y. Miyata, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, and H. Kataura, "Performance Enhancement of Thin-Film Transistors by Using High-Purity Semiconducting Single-Wall Carbon Nanotubes," Applied Physics Express, vol. 2, p. 071601, 2009. [3] W. Liang, A. I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, and P. Yang, "field-effect modulation of Seebeck coefficient in single PbSe nanowires," Nano Letters, vol. 9, p. 5, 2009. [4] S. A. J. Wiegers, M. Specht, L. P. Levy, M. Y. Simmons, D. A. Ritchie, A. Cavanna, B. Etienne, G. Martinez, and P. Wyder, "Magnetization and Energy Gapsof a High-Mobility 2D Electron Gas in the Quantum Limit," Phys. Rev. Lett, vol. 79, p. 4, 1997. [5] M. Brand, A. Malinowski, O. Karimov, P. Marsden, R. Harley, A. Shields, D. Sanvitto, D. Ritchie, and M. Simmons, "Precession and Motional Slowing of Spin Evolution in a High Mobility Two-Dimensional Electron Gas," Physical Review Letters, vol. 89, 2002. [6] 何誌欣, "以有機金屬氣象磊晶與分子束磊晶成長氮化物半討體及相關場效電晶體,光偵測器,與發光二極體之研製," 國立成功大學電機工程學系, 2003. [7] A. K. Geim, "Nobel Lecture: Random walk to graphene," Reviews of Modern Physics, vol. 83, pp. 851-862, 2011. [8] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "two-dimensional atomic crystals," PNAS, vol. 102, p. 3, 2005. [9] K. S. Novoselov, V. I. Fal''ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, Oct 11 2012. [10] S. P. Dash, S. Sharma, R. S. Patel, M. P. d. Jong, and R. Jansen, "Electrical creation of spin polarization in silicon at room temperature," Nature, vol. 462, p. 4, 2009. [11] I. Neumann, J. V. d. Vondel, G. Bridoux, M. V. Costache, F. Alzina, C. M. S. Torres, and S. O. Valenzuela, "electrical detection of spin precession in freely suspended grapehene spin valves on cross-linked poly," small, p. 5, 2013. [12] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. v. Wees, "electronic spin transport and spin precession in single graphene layers at room temperature," Nature, vol. 448, p. 5, 2007. [13] K. S. Novoselov, "Nobel Lecture: Graphene: Materials in the Flatland," Reviews of Modern Physics, vol. 83, pp. 837-849, 2011. [14] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊, p. 5, 2011. [15] C. Miao, C. Zheng, O. Liang, and Y.-H. Xie, "Physics and Applications of Graphene-Experiments," Chemical Vapor Deposition of Graphene, p. 18. [16] 林永昌, 呂俊頡, 鄭碩方, and 邱博文, "石墨烯之電子能帶特性與其元件應用," 物理雙月刊, p. 12, 2011. [17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, p. 4, 2005. [18] M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, "Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels," Phys. Rev. Lett, vol. 82, p. 4, 1999. [19] F. D. M. Haldane, "Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"," Physical Review Letters, vol. 61, pp. 2015-2018, 1988. [20] 李明洋 and 唐九君, "石墨烯的量子霍爾效應與弱局域效應," 物理雙月刊, vol. 33, p. 6, 2011. [21] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry''s phase in graphene," Nature, vol. 438, p. 4, 2005. [22] Z. Jiang, Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, "Quantum Hall effect in graphene," ELSEVIER, vol. 143, p. 5, 2007. [23] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, "Room-Temperature Quantum Hall," Science, vol. 315, p. 1, 2012. [24] H. Seidel, L. Csepregi, A. Heuberger, and H. Boumgartel, "Anisotropic etching of crystalline silicon in alkaline solutions," The Electrochemical Society, Inc., vol. 137, p. 15, 1990. [25] 洪國川, "共焦拉曼與螢光顯微鏡之發展及其在材料," 國立中央大學物理學系, 2010. [26] B. J. Kim, S.-K. Lee, M. S. Kang, J.-H. Ahn, and J. H. Cho, "Coplanar-Gate Transparent Graphene Transistors and Inverters on Plastic," American Chemical Society, vol. 6, p. 6, 2012. [27] N. F. MOTT, "Conduction in non-crystalline materials," vol. 1-18, p. 3, 1972. [28] H. Zhang, J. Lu, W. Shi, Z. Wang, T. Zhang, M. Sun, Y. Zheng, Q. Chen, N. Wang, J.-J. Lin, and P. Sheng, "Large-scale Mesoscopic Transport in Nanostructured Graphene," Physical Review Letters, vol. 110, 2013.
摘要: 
天然的二維材料石墨烯(Graphene),為單一碳原子層,各碳原子間以sp2共價鍵相接,屬二維π電子氣傳導系統,具備優異的載子傳輸特性。此外,石墨烯具特殊的線性能帶結構,在低能量處導帶與價帶成對稱的圓錐狀並相交於狄拉克點(Dirac point),當調變費米面(Fermi level)可觀察到顯著的雙極性電場效應(ambipolar field effect)。
本研究欲探討自製石墨烯元件的表面分析及電傳輸特性。採用化學氣相沉積法(CVD)通入載流氣體甲烷(CH4)及氫氣(H2),以4:1生長比例於金屬基板-銅箔,生成大面積(2cm×2cm)且均勻的石墨烯。為了進行後續量測,將銅箔漂浮於硝酸鐵溶液0.25M或過硫酸銨溶液0.1M由背面蝕刻銅箔,以轉移製程(transfer process)轉移到氮化矽薄膜基板(Si3N4)及表面成長300nm二氧化矽(SiO2/Si)基板石墨烯元件初步完成。
氮化矽薄膜基板鋪上CVD石墨烯後,置於拉曼光譜儀下針對基板上不同基材的區域:氮化矽薄膜、矽基板(silicon)與金(Au)分別擷取反射訊號Rayleigh scattering(0cm 1)、碳波段拉曼訊號D-band(1360cm-1)、G-band(1580cm-1)以及2D-band(2700cm-1),以30nm氮化矽薄膜基板為待測樣品,碳訊號增強比例分別為D-band:1.79 ;G-band: 1.73與2D-band:1.49,而後使用薄膜厚度100nm氮化矽薄膜基板量測之後碳訊號強比例為D-band:0.97 ;G-band: 1.27與2D-band:1.22,相較之下,薄膜厚度減小具有增強拉曼訊號的趨勢。
另一方面,CVD石墨烯轉移至(SiO2/Si)基板的元件欲進行電性量測,先利用光學微影將石墨烯進行大面積的圖形化,則部分樣品在中央區域進一步作電子束微影製程。最後利用反應式離子蝕刻機(RIE)去除未受到光阻覆蓋的石墨烯。使自製的放大器進行四點量測並繪製I-V特性曲線CVD石墨烯元件的電阻值為k Ω,經過退火處理後電阻值上升為10kΩ等級,並在室溫及4K下量測到Dirac point,電子與電洞的遷移率μ皆落在102cm2/V‧s數量級上。

Graphene, an isolated single atomic layer of graphite, spotlights the practicability of the quantum confined systems. Here we report the optical and electric properties of graphene synthesized by chemical vapor deposition(CVD) on copper foils. The copper foil is etched by 0.25M ferric nitrate solution or 0.1M ammonium persulfate(APS) solution from backside. The graphene is transferred (assisted by PMMA)onto Si3N4/Si and SiO2/Si substrates, respectively. The Si3N4/Si substrates with Si3N4 membrane which thickness of 30nm, 75nm and 100nm . Through Raman spectrum mapping (with 488nm excitation laser), carbon signals are revealed an enhancement larger than 50% in D-band (1360cm-1) , G-band(1580cm-1) and 2D-band (2700cm-1) when the graphene was on sub-micrometer membranes. For studying their charge transport property, the grpaphene were transferred onto SiO2/Si substrates, followed by the fabrication of Al top gates. By modulating the gate voltage, we observed an ambipolar field effect and determined the Dirac point. The hole and the electron mobility both are on the order of 102cm2/V‧s . With sufficient magnetic field modulated, we observe Anderson localization at several temperatures.
URI: http://hdl.handle.net/11455/17252
其他識別: U0005-2808201310414500
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-102-7101054017-1.pdf2.98 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.