Please use this identifier to cite or link to this item:
標題: 奈米半球形陣列結構模具製作及其在奈米生醫感測晶片之應用
The fabrication of nano-hemisphere array mold and its application on nanobio sensor
作者: 陳毓姍
Chen, Yu-Shan
關鍵字: Nanomolding;奈米模具;nano-hemisphere array;anodic aluminum oxide;nickel electroforming;electrochemical deposit;奈米半球陣列;陽極氧化鋁膜;電鑄鎳;電化學沉積
出版社: 機械工程學系所
引用: 1. C.R. Martin. Nanomaterials: a membrane-based systhetic approach. Science 1994; 266, 1961-1966. 2. Y. Yamauchi, N. Suzuki, L. Radhakrishnan, ans L. Wang. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials. Chem Rec. 2009; 9(6), 321-39. 3. B.Y. Kim, J.T. Rutka, and W.C. Chan. Nanomedicine. N Engl J Med. 2010; 363(25), 2434-43. 4. R. Subbiah, M. Veerapandian, and K.S. Yun. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010; 17(36), 4559-77 5. G. Cao and D. Liu. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science 2008; 136(1-2), 45-64. 6. H.T. Chen and G.J. Wang. Fabrication of 3D nano-structured ITO films by RF magnetron sputtering. Current Nanoscience 2009; 5(3), 297-301. 7. Y. Li, N. Koshizaki, and W. Cai. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 2011; 255(3-4), 357-373. 8. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, and G.M. Whitesides. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 2005; 105, 1171–1196. 9. B.K. Teo and X.H. Sun. From Top-Down to Bottom-Up to hybrid nanotechnologies: road to nanodevices. J of Cluster Science, 2006; 17(4), 529-540. 10. J.V. Barth, G. Costantini, and K. Kern. Engineering atomic and molecular nanostructures at surfaces. Nature 2005; 437, 671-679. 11. S.Y. Chou, P.R. Krauss, and P.J. Renstrom. Imprint lithography with 25-nanometer resolution. Science 1996; 272, 85–87. 12. L.J. Guo. Nanoimprint lithography: methods and material requirements. Adv. Mater. 2007; 19, 495–513. 13. S. Zankovych, T. Hoffmann, J. Seekamp, J.U. Bruch, and C.M.S. Torres. Nanoimprint lithography: challenges and prospects. Nanotechnology 2001; 12, 91-95. 14. S.H. Hong, B.J. Bae, J.Y. Hwang, S.Y. Hwang, and H. Lee. Replication of high ordered nano-sphere array by nanoimprint lithography. Microelectronic Engineering 2009; 86, 2423-2426. 15. S. Zhao, H. Roberge, A. Yelon, and T. Veres. New application of AAO template: a mold for zanoring and nanocone arrays. J. Am. Chem. Soc. 2006; 128, 12352-12353. 16. W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng. Porous alumina nano-membranes: soft replica molding for large area UV-nanoimprint lithography. Microelectronic Engineering 2009; 86, 2375-2380 17. G.J. Wang, Y.C. Lin, J.W. Lee, C.C. Hsueh, S.H. Hsu, and H.S. Hung. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates. Biomedical Microdevices 2009; 11, 843-850. 18. G. Kumar, H.X. Tang, and J. Schroers. Nanomoulding with amorphous metals. Nature 2009; 457, 868-872. 19. E. Engvall and P. Perlman. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 1971; 8, 871-874. 20. W. N. Burnette. Western blotting'': electrophoretic transfer of proteins from sodium dodecyl sulfate - polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 1981; 112, 195-203. 21. H. Towbin, T. Staehelin, J. Gordon. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 1979; 76, 4350-4354. 22. S.M. Han, J.H. Cho, I.H. Cho, E.H. Paek, H.B. Oh, B.S. Kim, C.R.K. Lee, Y.K. Kim, and S.H. Paek. Plastic enzyme-linked immunosorbent assays (ELISA)-on-a-chipbiosensor for botulinum neurotoxin A. Analytica Chimica Acta 2007; 587, 1-8. 23. L. Zhong, W. Zhang, C. Zer, K. Ge, X. Gao, and K.H. Kernstine. Protein microarray: Sensitive and effective immunodetection for drug residues. BMC Biotechnology 2010; 10-12. 24. Y. Zhou, X.L. Tian, Y.S. Li, F.G. Pan, Y.Y. Zhang, J.H. Zhang, L. Yang, X.R. Wang, H.L. Ren, S.Y. Lu, Z.H. Li, Q.J. Chen, Z.S. Liu, and J.Q. Liu. An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II). Biosensors and Bioelectronics 2011; 26, 3700-3704. 25. J.J. Gooding and D.B. Hibbert. The application of alkanethiol self-assembled monolayers to enzyme electrodes. Trends in Analytical Chemistry 1999; 18(8), 525-533. 26. W.C. Bigelow, D.L. Pickett, and W.A. Zisman. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Colloid Interface Sci. 1946; 513-538. 27. H.O. Finklea, S. Avery, and M. Lynch. Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir 1987; 3, 409-413. 28. R.G. Nuzzo, F.A. Fusco, and D.L. Allara. Spontaneously organized molecularassemblies. 3. preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society 1987; 109, 2358-2368. 29. W.R. Everett, T.L. Welch, L. Reed, and I.F. Faules. Potential- dependent stability of self-assembled organothiols on gold electrodes in methylene chloride. Analytical Chemistry 1995; 67, 292-298. 30. S. Imabayashi, D. Hobara, T. Kakiuchi. Selective replacement of adsorbed alkanethiols in phase-separated binary self-assembled monolayers by electrochemical partial desorption. Langmuir 1997; 13, 4502-4504. 31. F. Frederix, K. Bonroy, and W. Laureyn. Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold. Langmuir 2003; 19, 4351-4357. 32. S.J. Ding, B.W. Chang, C.C. Wu, M.F. Lai , and H.C. Chang. Electrochemical evaluation of avidin–biotin interaction on self-assembled gold electrodes. Electrochimica Acta 2005; 50, 3660–3666. 33. 林侑達,以陽極氧化鋁模板製備3D均勻分布之奈米金粒子生物感測器,國立中興大學機械工程研究所碩士論文,(2008) 34. 郭仲華,微奈米壓印模具與技術之開發,國立成功大學化學工程研究所碩士論文,(2007) 35. S.Y. Chou, P.R. Krauss, and P.J. Renstrom. Imprint of Sub-25 nm Vias and Trenches in Polymers. Appl. Phys. Lett. 67 1995; 21, 3114. 36. S.Y. Chou, P.R. Krauss, and P.J. Restrom. Nanoimprint lithography. J. Vac. Sci. Technol. B 1996; 14, 4129. 37. J. Haisma, M. Verheijen, K. Heuvel, and J. Berg. Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac .Sci. Technol. B 1996; 14, 4124-4128. 38. C.G. Willson and M.E. Colburn, United States Patent, 6, 334, 960, 2002. 39. P. Ruchhoefft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J.C. Wolfe, and C.G. Willson. J. Vac .Sci. Technol. B 1996; 17, 2965. 40. M. Colburn, A. Grot, B.J. Choi, M. Amistoso, T. Bailey, S.V. Sreenivasan, J.G. Ekerdt, and C. G. Willson. J. Vac .Sci. Technol. B 2001; 19, 2162,. 41. S.C. Johnson, T.C. Bailey, M.D. Dickey, B.J. Smith, E.K. Kim, A.T. Jamieson, N.A. Stacey, J.G. Ekerdt, and C.G. Willson, SPIE Microlithography Conference, 2003 42. H. Masuda, F. Hasegwa, and S. Ono. Self-ordering of cell arrangement. of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 1997; 144, 127-130. 43. G.E. Thompson. Porous anodic alumina: fabrication characterization and applications. Thin Solid Film 1997; 297, 192-201. 44. G.E. Thompson, R.C. Furneaux, G.C. Wood, and J.A. Richardson. Growth of Porous Anodic Film on Aluminium. Nature 1978; 272, 433-435. 45. G.E. Thompson. Porous anodic alumina: fabrication characterization and applications. Thin Solid Film 1997; 297, 192-201. 46. G.E. Thompson, R.C. Furneaux, G.C. Wood, and J.A. Richardson. Growth of Porous Anodic Film on Aluminium. Nature 1978; 272, 433-435. 47. K. Shimizu, S. Kobayashi, G.E. Thompson, and G.C. Wood. Electron Beam Induced Crystallization of Anodic Barrier Films on Aluminium: Influence of incorporated anions. J. Appl. Electrochem. 1985; 15, 781-783. 48. K. Shimizu, S. Kobayashi, G.E. Thompson, and G.C. Wood. Electron Beam Induced Crystallization of Anodic Barrier Films on Aluminium: Influence of incorporated anions. J. Appl. Electrochem. 1985; 15, 781-783. 49. A.P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J Appl. Phys. 1998; 84 (11), 6023-6026. 50. H. Masuda and K. Fukuda. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995; 268, 1466-1468. 51. C.Y. Liu, A. Datta, and Y.L. Wang. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 2001; 78 (1), 120-122. 52. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura. Square and Triangular Nanohole Array Architectures in Anodic Alumina. Adv. Mater. 2001; 13 (3), 189-192. 53. 林晃業,微米級結構射出成型之研究,國立成功大學航空太空工程所碩士論文,(2005) 54. 呂博文,Fe3O4奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究,國立雲林科技大學化學工程系碩士論文,(2006) 55. L.C. Clark and C. Lyons. Electrode systems for continuous monitoring incardiovascular surgery. Annals of the New York Academy of Sciences. 1962; 102, 29-45. 56. 藤島昭、相澤益男、井上徹,電化學測定方法,(1984) 57. M.A. Lopez, F. Ortega, E. Dominguez, and I. Katakis. Electrochemical immunosensor for the detection of atrazine. J Mol Recognit, 1998; 11, 178-181. 58. A. Amirudin and D. Thierry. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progress Organic Coatings 1995; 26, 1-28. 59. W. Jing and E. Wang. Paint-freeze method to from self-assembled alkanethio bilayers on gold. Analytical Sciences 1998; 14, 117-120. 60. C. Tlili, K. Reybier, L. Ponsonnet, C. Martelet, H.B. Ouada, M. Lagarde, and N.J. Renault. Fibroblast cells:a sensing bioelement for glucose detection byimpedance spectroscopy. Analytical Chemistry 2003; 75, 3340-3344. 61. F. Bordi, C. Cametti, and A. Gliozzi. Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode. Bioelectrochemistry 2002; 57, 39-46. 62. E. Katz, L. Alfonta, and I. Willner. Chronopotentiometry and faradaic impedancespectroscopy as methods for signal transduction in immunosensors. Sensors and Actuators B 2001; 76, 134-141. 63. L. Yang, Y. Li, and G.F. Erf. Interdigitated array microelectrode-based electrochemicalimpedance immunosensor for detection of Escherichia coli O157:H7. Analytical Chemistry 2004; 76, 1107-1113. 64. 陳偉棋,以螢光單體製備分子模版共聚物對肌酸酐吸附之探討,國立中興大學化學工程學系碩士論文,(2004) 65. 劉盈村,光纖式表面電漿子共振生醫微感測器,國立台灣大學醫學工程研究所碩士論文,(2001) 66. K.A. Marx. Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules, 2003; 4, 1100-1120. 67. 郭清癸、黃俊傑、牟中原,金屬奈米粒子的製造,(2001) 68. 蔡朝淵,奈米金在奈米生物技術與奈米醫學上的應用,國立成功大學基礎醫學研究所博士論文,(2007) 69. M.T. Reetz, R. Bieinhauer, and T. Thomas. Site-Selective Synthesis of Nanostructural Transition Metal clusters. J. American Chemical Society 1994; 116, 7401-7401. 70. 賴民峰,電阻抗分析於自組性單層薄膜之特性評估與其在生物檢測上之應用,國立成功大學醫學工程所碩士論文,(2004) 71. H. Cai, C. Xu, P. He, and Y. Fang. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem. 2001; 510(1-2) 78-85. 72. J.J. Wang, A. Nikolov, and Q. Wu. Nano- and microlens arrays grown using atomic-layer deposition. IEEE Photo. Tech. Lett. 2006; 18(24), 2650-2652. 73. Z.B. Wang, W. Guo, A. Pena, D.J. Whitehead, B.S. Luk''yanchuk, L. Li, Z. Liu, Y. Zhou, and M.H. Hong. Laser micro/nano fabrication in glass with tunable-focus particle lens array. Opt. Exp. 2008; 16(24), 19706-19711. 74. P.K. Wei and W.L. Chang. Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography. Opt. Exp. 2007; 15(11), 6774-6783. 75. L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, and S. Fan. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 2009; 9(1), 235-238. 76. T.J. Webster, Z. Tong, J. Liu, and M.K. Banks. Adhesion of Pseudomonas fluorescens onto nanophase materials. Nanotechnology 2005; 16(7), S449-S457. 77. D.C. Miller, K.M. Haberstroh, and T.J. Webster. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J. of Biomedical Materials Research Part A 2007; 81A(3), 678-684. 78. A.W. Martinez, S.T. Phillips, M.J. Butte, and G.M. Whitesides, Angew. Chem., Int. Ed. 2007; 46, 1318-1320. 79. A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas III, H. Sindi, and G.M. Whitesides. Anal. Chem. 2008, 80, 3699-3707 80. A.W. Martinez, S.T. Phillips, and G.M. Whitesides. Anal. Chem. 2010, 82, 3-10
本研究亦以奈米鎳模仁熱壓印成形之PC塑膠奈米結構製作低成本、高靈敏度之奈米生醫感測晶片,先於PC塑膠奈米結構上濺鍍一層金導電層,並利用電化學沉積法均勻沉積大小約為10 nm之奈米金顆粒,提升電極表面積,再沈積奈米銀顆粒提升導電度,製作出高靈敏度奈米生醫感測晶片。因基材為PC塑膠材料,利用熱壓成形可快速大量生產,故其成本低,使用後可直接丟棄;PC基材上具奈米半球陣列結構,故利用電化學沉積法可均勻沉積奈米金顆粒於其上,奈米金顆粒將可大幅提升檢測表面積,增加待測物接附量;而電化學沉積法沉積奈米銀顆粒則可提升電子傳遞之導電效果,以提高感測器之靈敏度。由CV圖估算電極表面積,測得沉積奈米金顆粒後之表面積為沉積前的3.26倍;並利用螢光分析驗證沉積奈米金顆粒後之電極確實可提高待測物之接附量;最後以電化學阻抗分析檢測待測物濃度以驗證晶片之靈敏度,目前在塵蟎過敏原(Der p2)檢測之最低濃度可達0.1pg/ml,檢測範圍可達10 ng/ml。

In replica molding or imprinting, robustness and durability of the replica mold are the main requirements for industrial applications. In this study, we demonstrate a replica mold fabrication method for nano-hemisphere arrays nanomolding by nickel electroforming using the highly ordered nano-hemisphere array of the barrier-layer surface of an anodic aluminum oxide (AAO) membrane as the master mold. The diameter and height of the hemispheric nanostructure are 80 nm and 47 nm, respectively. The feature size of the nano-hemispheres can be further reduced by the use of a sulfuric acid etched AAO master mold. Using the Ni replica mold, nano-hemisphere arrays of polycarbonate (PC) were obtained by hot embossing, and nano-patterned poly(lactic-co-glycolic acid) (PLGA) tissue engineering scaffolds were fabricated by casting. Those results indicate that the proposed nanomolding method is suitable for further industrial applications.
The fabricated 3D nickel mold is further used for replica molding of a nano-structure polycarbonate (PC) substrate by hot embossing. An Au thin film is than sputtered on the PC substrate to form the electrode followed by the deposition of an orderly and uniform gold nanoparticle (GNP) layer on the 3D Au electrode using electrochemical deposition. Finally, silver nanoparticles (SNP) are deposited on the uniformly deposited GNPs to enhance the conductivity of the sensor. Electrochemical impedance spectroscopy (EIS) analysis is then used to detect the concentration of the target element. The sensitivity of the proposed scheme on the detection of the dust mite antigen Der p2 can reach 0.1pg/ml.
其他識別: U0005-2607201123134900
Appears in Collections:機械工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.