Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1731
標題: 雷射切割薄化晶圓製程參數對晶片品質影響之研究
A Study on the Effect of Process Parameters on Chip Quality for Thin Wafer by Laser Dicing
作者: 陳培領
Chen, Pei-Ling
關鍵字: Laser Dicing;雷射切割;Thin Wafer;Topside Chipping;Adaptive Network-Based Fuzzy Inference System (ANFIS);薄化晶圓;製程參數;切割品質;晶片崩缺;適應性網路模糊推論系統
出版社: 機械工程學系所
引用: [Bauerle, 1996] D. Bauerle, Laser Processing and Chemistry, Springer, 1996. [Kim et al, 2009] D. Kim, Y. Kim, K. Seong, J. Song, B. Kim, C. Hwang and C. Lee,“Evaluation for UV Laser Dicing Process and its Reliability for Various Designs of Stack Chip Scale Package,”Electronic Components and Technology Conference, pp1531–1536, 2009. [Klug, 2008] G. Klug, “Advanced Solutions for Ultra-Thin Wafers and Packaging,” Disco H-Tech Europe, 2008. [Kröninger & Mariani, 2006] W. Kröninger and F. Mariani, “Thinning and Singulation of Silicon: Root Causes of the Damage in Thin Chips,” Electronic Components and Technology Conference, pp1317–1522, 2006. [Li et al, 2007] J. Li, H. Hwang, E.-C. Ahn, Q. Chen, P. Kim, T. Lee, M. Chung and T. Chung, “Laser Dicing and Subsequent Die Strength Enhancement Technologies for Ultra-thin Wafer,” Electronic Components and Technology Conference, pp761–766, 2007. [Miyazaki et al, 2009] C. Miyazaki, H. Shimamoto, T. Uematsu and Y. Abe, “Development of Wafer Tthinning and Dicing Technology for Thin Wafer,” 978-1-4244-4512-7/09© 2009IEEE, 2009. [Shiuann, 2006] L. K. Shiuann, “Laser as a Future Direction for Wafer Dicing : Parametric Study and Quality Assessment,” International Electronic Manufacturing Technology, pp506–509, 2006. [Takyu et al, 2008] S. Takyu, J. Sagara and T. Kurosawa, “A Study on Chip Thinning Process for Ultra Thin Memory Devices,” Electronic Components and Technology Conference, pp1511–1516, 2008. [Teo et al, 2006] M. Teo, S. C. Kheng and C. Lee, “Process and Material Characterization of Die Attach Film (DAF) for Thin Die Applications,” 1-4244-0834-2/06©2006IEEE, 2006. [Yilbas, 2004] B. S. Yilbas, “Laser Cutting Quality Assessment and Thermal Efficiency Analysis,” Journal of Materials Processing Technology, pp2106–2115, 2004. [EO Technology, 2007] EO Technology, Laser Principle Introduce Report, EO Technology Co., 2007. [ALSI Technology, 2010] ALSI Technology, Laser Cutting Presentation Report, ALSI Technology Co., 2010. [潘家寅,1992] 潘家寅譯,雷射,徐氏基金會,1992。 [高堅志,1992] 高堅志譯,實用雷射技術,文笙書局,1992。 [林三寶,1991] 林三寶,雷射原理與應用,全華圖書,1991。 [蘇品書,1993] 蘇品書,雷射原理與實用技術,復漢出版社,1993。 [馬英俊,1987] 馬英俊譯,雷射,徐氏基金會,1987。 [陳思聖,2007] 陳思聖,半島體產業耀眼明星-NAND Flash,TRI 拓僕產業研究所,2007。 [簡與余,2007] 簡志勝與余瑞琁,2007半導體工業年鑑,經濟部技術處,2007。 [秋葉稔光,1986] 秋葉稔光,雷射技術原理實務,復漢出版社,1986。 [蔡宗河,1995] 蔡宗河,CO2雷射加工,全華圖書,1995。 [金剛 優,2007] 金剛優,雷射加工,新武機械貿易股份有限公司,2007。 [葉時彰,2010] 葉時彰,Nd:YAG雷射加工鋁合金表面微結構對塑膠射出結合性之參數探討,中興大學機械工程研究所碩士論文,2010。 [黃聖哲,2010] 黃聖哲,NAND Flash Market Tend Report,矽品精密工業股份有限公司,2010。 [丁勝懋,1993] 丁勝懋,雷射工程導論,中央圖書出版社,1993。 [王兆煒,2000] 王兆煒,鑽石刀片切割矽晶片之破裂分析,華梵大學機電工程研究所碩士論文,2000。 [陳彥為,2008] 陳彥為,摻釹釔鋁石榴石雷射於整枚晶圓刻字參數最適化之探討,逢甲大學資訊電機工程研究所碩士論文,2008。 [李子明,2010] 李子明,應用田口法於雷射開槽參數最適化之探討,中興大學電機工程研究所碩士論文,2010。 [張致祥,2004] 張致祥,應用適應性模糊系統於磨後工件表面品質之預測,高雄第一科技大學機械與自動化工程研究所碩士論文,2004。 [蒙以正,2004] 蒙以正, Matlab入門與精進,儒林圖書有限公司,2004。 [葉怡成,2003] 葉怡成,類神經網路模式應用與實作,儒林圖書有限公司,2003。 [尤建忠,2006] 尤建忠,應用適應性網路模糊推論系統預測基本怠速之轉數,雄工學報7期,2006。
摘要: 
隨著積體電路容量的需求以及半導體製造技術的演進,近期以晶片堆疊後再封裝的三度空間積體電路(3DIC)已成為主要的趨勢,而3DIC因利用黏著膠材(DAF) 堆疊晶片,成為複合性之材料,於封裝過程中使用傳統鑽石割刀切割,面臨晶片正面、背面崩缺及貼布殘絲等問題,故亟需探討較佳的切割技術以克服這些問題。本研究探討利用摻釹釔鋁石榴石 (Nd:YAG) 雷射切割複合性薄化晶圓時,製程參數對晶片加工品質之影響,並建構加工品質與製程參數模型,作為複合性半導體晶圓雷射切割製程操控之依據。
本研究首先透過先導實驗確認影響加工品質之主要參數,先導實驗結果顯示,晶片背面崩缺及貼布殘絲可透過雷射加工方式有效地解決,但仍有少部分的晶片產生正面崩缺,故研究以全因子實驗並搭配適應性網路模糊推論系統(ANFIS),建構晶片正面崩缺的預測模型。研究結果顯示影響加工品質之主要參數包括製程的氣體流量、雷射焦距及多面鏡轉數,在全因子實驗中,當氣體流量由3L/min增加至6L/min時,崩缺尺寸由4.09μm縮減至3.47μm,縮減幅度約15%;當雷射焦距由矽晶圓表面調整至矽晶圓底部時,崩缺尺寸由4.09μm縮減至3.12μm,縮減幅度約23%;當多面鏡轉數由3,000rpm增加至3,250rpm時,雷射重疊率為80%至85%,崩缺尺寸由4.09μm縮減至4.1μm,加工品質無顯著差異。研究進一步應用ANFIS,使用高斯歸屬函數訓練,可獲最小誤差率平均值為2.46%,準確度約97.54%,然而,如以預測模型為提供適當的加工參數,要獲得較小的晶片正面崩缺尺寸,則氣體流量要大於4L/min、雷射焦距需聚焦至矽晶圓底部及多面鏡轉數需在3,100rpm至3,250rpm,且雷射重疊率為85%可得到較小的正面崩缺尺寸。

As the density requirement of integrated circuit (IC) and the progress of in semiconductor technology. A short term is using stack die then do the assembly process for 3DIC integrated circuit become the main trend. The 3DIC is using the DAF to stack chip, it will become the complex material, which has topside chipping, backside chipping and film burr such problems. This research study when using the Nd:YAG laser to saw the complex thin wafer, how the process parameter influence the process quality, to build the model about the process quality and process parameter, as the basis for operate complex semiconductor wafer laser saw process.
In this study , we first examine the major parameter which influence process quality by operating pre-experiment, which shows the topside chipping and film burr can be solved effective by laser process , but there still have a little topside chipping , so this study is using the full factor experiment and combine with ANFIS, to build a forecast model for chip topside chipping. The study result show the air flow, laser defocus and Polygon revolution at the laser process how to influence the process quality. During the full factor experiment when the air flow increase from 3L/min to 6 L/min , the chipping size will decrease from 4.09μm to 3.47μm, the percentage is down about 15%. When the laser defocus to in the bottom of silicon wafer, the chipping size decrease from 4.09μm to 3.12μm ,the percentage is down about 23%. The Polygon revolution change from 3000 rpm to 3250 rpm and the laser overlap from 80% to 85%, the chipping size is decrease to 4.1μm from 4.09μm, the quality has no obvious difference. And further using the ANFIS ,use the Gaussian Blur, can get the average minimum inaccuracy about 2.46%, the accuracy is about 97.54%. However , as the forecast model inferences the suitable process parameter, want to get the smaller chip topside chipping size, the air flow need to large then 4L/min, laser defocus need to in the bottom of silicon wafer, the Polygon revolution need to in the range between 3100rpm and 3250rpm, can get the smaller topside chipping size.
URI: http://hdl.handle.net/11455/1731
其他識別: U0005-2608201111584700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.