Please use this identifier to cite or link to this item:
標題: 三元化合物AgMS2(M=Sb,Bi)量子點之合成及在敏化太陽電池上的應用
Synthesis of ternary compound AgMS2(M=Sb,Bi) quantum dots for applications in solar cells
作者: 楊惟智
Yang, Wei-Chih
關鍵字: 銀鉍硫;AgBiS2;銀銻硫;量子點;敏化太陽電池;AgSbS2;quantum dots;solar cells
出版社: 奈米科學研究所
引用: [1] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 261, 402 (1976) [2] B. O’regan and M. Grätzel, Nature 353,737 (1991) [3] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and Michael Grätzel, Journal of the American Chemical Society 127, 16835 (2005) [4] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md.K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S.M Zakeeruddin, M. Grätzel, Science 334, 629-634(2011) [5] S. H. Im, C. S. Lim, J. A. Chang, Y. H. Lee, N. Maiti, H. J. Kim, Md. K. Nazeeruddin, M. Grätzel, S. I. Seok, Nano Letters 11, 4789(2011) [6] J. G. Garza, S. Shaji, A. C. Rodriguez, T. K. DasRoy, B. Krishnan, Applied Surface Science 275, 10834(2011) [7] B. Pejova, I. Grozdanov, D. Nesheva, A. Petrova, Chemistry of Materials 20, 2551(2008) [8] M. Wang, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, Energy & Environmental Science 5, 9394(2012) [9] 陳佳靜, 國立中興大學物理所碩士論文 (2008) [10] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 338, 643(2012) [11] M. Grätzel, Prog. Photovolt. Res. Appl. 8, 171-185(2000) [12] Rutkowska, Iwona A.; Andrearczyk, Adam; Zoladek, Sylwia; Goral, Monika; Darowicki, Kazimierz; Kulesza, Pawel J. Journal of Solid State Electrochemistry 15, 2545(2011) [13] Md. K. Nazeeruddin, R. Humphry-Baker, P.Liska, M. Grätzel, The Journal of Physical Chemistry B , 107, 8981 (2003) [14] A. Fattori, L. M. Peter, K.L. McCall, N.Robertson, F.Marken Journal of Solid State Electrochemistry 14, 1929(2010) [15] A. J. Nozik, Physica E: Low-dimensional Systems and Nanostructures 14, 115(2002) [16] M. Grätzel, Nature 414, 338−344 (2001) [17] S. A. Haque, E. Palomares, B. M.Cho, A. N. Green, N. Hirata, D. R. Klug, J. R. Durrant, Journal of the American Chemical Society 127, 3456(2005) [18] P. Wang, S. M. Zakeeruddin, I. Exnar M. Grätzel, Chemical Communications 24, 2972(2002) [19] I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, Journal of the American Chemical Society 128, 2385(2006) [20] Y. Ho, M. W. Lee, Electrochemistry Communications 26, 48(2013) [21] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, Electrochemistry Communications 12, 1158(2010) [22] Z. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, Advanced Energy Materials 1, 259(2011) [23] C. Y. Lin, C. Y. Teng, T. L. Li, Y. L. Lee, H. Teng, Journal of Materials Chemistry A, 1, 1155(2013) [24] S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Journal of Photochemistry and Photobiology A: Chemistry 179, 135–141 (2006) [25] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tasy, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir S. Weiss, Science 307, 538(2005) [26] R. D. Schaller, V. I. Klimov, Physical Review Letters 92, 18(2004) [27] 陳頤承, 郭昭顯, 陳俊亨, 工業材料雜誌258期(2008) [28] “The path length in units of Air Mass, changes with the zenith angle.”[online]available 3/content.aspx [29] 李德龍, 國立中興大學物理所碩士論文 (2007) [30] 蔡進譯, 物理雙月刊二十七卷五期 (2005) [31] 林美佳, 國立中興大學物理所碩士論文 (2011) [32] 林麗娟, 工業材料86期 (1994) [33] 張啟修, 國立成功大學化學工程系碩士論文 (2005) [34] 何宜融, 國立中興大學物理所碩士論文 (2012) [35] E. Bundgaard, F. C. Krebs, Solar Energy Materials & Solar Cells 91, 954(2007) [36] “HR-TEM(JEOL JEM-2010)”[online]available [37] O. Madelung, U. Rössler, M. Schulz, Landolt-Börnstein - Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology, 41 [38] 黃本吉, 國立中興大學物理所碩士論文 (2012)
本論文主要是以三元化合物半導體量子點AgMS2 (M = Sb, Bi) 做為太陽電池中的吸光材料。本實驗採用兩階段的連續離子層吸附反應法( SILAR )並經過退火成功的將三元化合物半導體量子點合成於多孔性TiO2薄膜內,並且利用X-ray粉末繞射儀與穿透式電子顯微鏡(TEM)分析所合成出材料的結晶型式、晶粒大小與外觀形貌。其光學特性則藉由紫外-可見光譜儀(UV-Vis Spectroscopy)進行分析與計算能隙。而太陽電池的性能方面是使用氙燈模擬AM 1.5 G (1000 W/m2)的太陽光,量測轉換效率以及不同光強度下對效率的影響。最後以單光儀量測樣品的外部量子效率(EQE)。
最終可得到AgSbS2量子點為面心立方結構,能隙為1.88 eV,晶粒大小約15-20 nm。敏化太陽電池在經過最佳化條件處理與SI電解質搭配Au對電極在100 %太陽光下可得到轉換效率0.79 %、開路電壓0.3 V與短路電流密度8.3 mA/cm2與填充因子32.8 %,而在14.8 %太陽光下轉換效率可達到1.28 %。
AgBiS2量子點一樣為面心立方結構,能隙為1.3 eV,平均晶粒大小為15.7 nm。敏化太陽電池在經過最佳化條件處理與SII電解質搭配Au對電極在102.4 %太陽光下可得到轉換效率0.53 %、開路電壓0.18 V與短路電流密度7.6 mA/cm2與填充因子38.6 %,而在14.8 %太陽光下轉換效率可達到0.76 %。

We study ternary compound Semiconductors AgMS2 (M = Sb, Bi) to replace Sensitizer in Dye-Sensitized Solar Cells. The AgMS2 (M = Sb, Bi) quantum dots were synthesized in nano-porous TiO2 thin film by two stage successive ionic layer adsorption and reaction method. The crystallinity and morphology were characterized by X-ray diffraction and transmission electron microscopy. The optical properties were characterized by UV-vis spectroscopy. The performance of solar cells were measured at standard AM 1.5G (1000 W/m2) light source, and External quantum efficiency measured by Monochromator.
The characteristic of AgSbS2 was face-central cubic structure, energy gap 1.88 eV, and the range of crystal size was 15 to 20 nm. The best cell yields short-circuit current of 8.3 mA/cm2, an open circuit voltage of 0.3 V, a fill factor of 32.8 %. A power conversion efficiency of 0.79 % at one sun, and 1.28 % at 14.8 % sun.
The characteristic of AgBiS2 was face-central cubic structure, energy gap 1.3eV, and the average crystal size was 15.7 nm. The best cell yields short-circuit current of 7.6 mA/cm2, an open circuit voltage of 0.18 V, a fill factor of 38.6 %. A power conversion efficiency of 0.53 % at one sun, and 0.76 % at 14.8 % sun.
其他識別: U0005-1508201313185100
Appears in Collections:奈米科學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.