Please use this identifier to cite or link to this item:
標題: 鉛銻硫三元金屬硫化物半導體敏化太陽能電池
Lead antimony sulfide ternary metal chalcogenide semiconductor-sensitized solar cells
作者: 劉俊傑
Liu, Jun-Jie
關鍵字: 鉛銻硫;Lead antimony sulfide;量子點;太陽能電池;quantum dots;solar cells
出版社: 奈米科學研究所
引用: 1. U.S. Energy Information Administration, Annual Energy Review (2011) 2. Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)) 3. SOLAR NOVUS TODAY, Multiple Exciton Generation Boosts Solar Efficiency 4. Matthieu Y. Versavel, Joel A. Haber, Thin Solid Films 515, 5767–5770 (2007) 5. Tsubomura H, Matsumura M, Nomura Y and Amamiya T, Nature, 261 40-45 (1976) 6. TSipo戰國策智權第八期 2008/09/04 7. Michael. Gratzel, Nature, 414, 338−344 (2001) 8. AERODISPR, fumed titanium dioxide dispersion for production of dye-sensitized solar cells 9. 陳佳靜, 國立中興大學物理所碩士論文 (2008) 10. 林義成, 國立彰化師範大學機電系/顯示所 (2005) 11. X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang and L. M. Peng, The Journal of Physical Chemistry C, 113, 7531-7535 (2009) 12. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Solar Energy Materials & Solar Cells, 70, 85-101, (2001) 13. Mingkui Wang, Carole Gratzel, Shaik M. Zakeeruddin, Michael Gratzel, Energy &Environmental Science, 5, 9394-9405 (2012) 14. 清潔能源網,太陽電池組件的實際發電效率的探究 15. 林美佳,國立中興大學奈米所碩士論文 (2011) 16. C Jackson Stolle, Taylor B Harvey and Brian A Korgel,Current Opinion in Chemical Engineering,2, 160–167 (2013) 17. S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Journal of Photochemistry and Photobiology A: Chemistry, 179, 135–141 (2006) 18. H.K. Jun, M.A. Careem, A.K. Arof, Renewable and Sustainable Energy Reviews, 22, 148–167 (2013) 19. STEVEN I. BOLDISH, WILLIAM B. WHITE, American Mineralogist, 83, 865–871 (1998) 20. Yafit Itzhaik, Olivia Niitsoo, Miles Page, and Gary Hodes, The Journal of Physical Chemistry C, 113, 4254–4256 (2009)
本研究以PbSbS半導體量子點作為光敏化劑取代染料化太陽能電池中的染料。實驗裡以連續離子層沉積反應法(Successive Ionic Layer Adsorption and Reaction method-SILAR)先合成PbS量子點在TiO2奈米顆粒上,接著再合成Sb2S3量子點在PbS量子點上,經過350℃退火,成功得到PbSbS量子點。另外針對PbSbS量子點以X-ray 繞射(XRD) 和穿透式電子顯微鏡(TEM),探討其結構與形態,紫外-可見光光譜儀(UV-Vis spectroscopy)分析其光吸收特性。在效率方面,使用二氧化鈦緊密層、二氧化鈦散射層、硫化鋅緩衝程處理,配上鉑對電極、1376碘電解液,在AM 1.5 太陽光下得到的電池轉換效率為1.94%、開路電壓為 0.45V、短路電流為11.04 mA/cm2,在11.8%太陽光下,得到的電池轉換效率達到2.51%、開路電壓為0.39V、短路電流為1.76 mA/cm2,外部量子效率量測在500 nm ~ 600 nm 得到平均轉換效率 52 %。

In our experiment, we use PbSbS quantum dots to replace dye molecules in dye sensitized solar cells. The PbSbS quantum dots can be easily produced by using successive ionic layer adsorption and reaction (SILAR). First, PbS quantum dots were grown on the TiO2 nanoparticles surface, Secondly, Sb2S3 quantum dots were coated on top of the PbS. After annealing 350℃ 1 H in N2 environment, we can get PbSbS quantum dots. To understand the characteristics of PbSbS quantum dots, we also did a series of experiments of X-ray diffraction, transmission electron microscopy ans UV-vis spectroscopy. By use TIP-coated, light-scattering layer, ZnS coating, Pt counterelectrode, iodide/triiodide electrolyte, the best solar cell yields power conversion efficiencies of 1.94% and 2.51% under 106% and 11.8% sun . The solar cells have an average external quantum efficiency (EQE) of ∼52% over the spectral range of 500∼600 nm.
其他識別: U0005-2708201315203700
Appears in Collections:奈米科學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.