Please use this identifier to cite or link to this item:
標題: 利用0.18 μm CMOS製程製作射頻微機電開關
Fabrication of RF MEMS switches based on the 0.18 μm CMOS process
作者: 林承陽
Lin, Cheng-Yang
關鍵字: RF MEMS Switch;射頻微機電開關;CPW;CMOS-MEMS;共平面波導線;CMOS-MEMS
出版社: 機械工程學系所
引用: [1] 顧馨文,MEMS在消費性電子的發展趨勢探索,資訊工業策進會MIC,2010。 [2] Yi Chiu, Heterogeneous Integration, 2012. [3] 彭宣榕,以蝕刻CMOS氧化層的後製程處理方法製作微機電射頻開關,國立中興大學碩士論文,2005。 [4] K. J. Rangra, Electrostatic Low Actuation Voltage RF-MEMS Switches for Telecommunications, University for Trento, Ph. D. dissertation, 2005. [5] D. S. W. Park, Y. Jeong, J. B. Lee and S. Jung, “Chip-level integration of RF MEMS on-chip inductors using UV-LIGA technique,” Microsystem Technologies, vol. 14, no. 9-11, pp. 1429-1438, 2008. [6] L. Guan, H. Liu and Z. Xiong, “A fully integrated CMOS and high voltage compatible RF MEMS technology,” Technical Digest - International Electron Devices Meeting, pp. 35-38, 2004. [7] R. S. Lai, A. A. Prince and I. Jose, “Novel design for RF MEMS capacitive shunt switch in K and Ku bands,” Communications in Computer and Information Science, vol. 102 CCIS, pp. 1-9, 2010. [8] T. J. King, R. T. Howe, S. Sedky, G. Liu, M. Wasilik and C. Duenn, “Recent progress in modularly integrated MEMS technologies,” Technical Digest – International Electron Devices Meeting, pp. 199-202, 2002. [9] K. P. B. Katehi, J. F. Harvey and E. Brown, “MEMS and Si micromachined circuits for high-frequency applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 858-866, 2002. [10] G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Magazine, vol. 2, no. 4, pp. 59-21, 2001. [11] J. J. Yao, “RF MEMS from a device perspective,” Journal of Micromechanics and Microengineering, vol. 10, no. 4, pp. R9-R38, 2000. [12] I. Schiele and B. Hillerich, “Comparison of lateral and vertical switches for application as microrelays,” Journal of Micromechanics and Microengineering, vol. 9, no. 2, pp. 146-150, 1999. [13] K. E. Peterson, “Micromechanical membrane switches on silicon,” IBM Journal of Research and Development, vol. 23, no. 4, pp. 376-385, 1979. [14] P. M. Zavracky and R. H. Morrison, “Electrically actuated micromechanical switches with hysteresis,” IEEE Solid-State Sensor Conference, pp. 50-51, 1984. [15] J. J. Yao and M. F. Chang, “Surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz,” International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Proceedings, pp. 384-387, 1995. [16] C. Goldsmith, T. H. Lin, B. Powers, R. W. Wen and B. Norvell, “Micromechanical membrane switches for microwave applications,” IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 91-94, 1995. [17] C. I. Lee, C. H .Ko and T. C. Huang, “Design of multi-actuation RF MEMS switch using CMOS process,” 2008 3rd International Microsystems, Packaging, Assembly and Circuits Technology Conference, pp. 141-144, 2008. [18] S. Kang, H. C. Kim and K. Chun, “Single pole four throw RF MEMS switch with double stop comb drive,” 21st IEEE International Conference on Micro Electro Mechanical Systems, pp. 1036-1039, 2008. [19] F. Ke, J. Miao and Z. Wang, “A wafer-scale encapsulated RF MEMS switch with a stress-reduced corrugated diaphragm,” Sensors and Actuators, A: Physical, vol. 151, no. 2, pp. 237-243, 2009. [20] M. S. Giridhar, A. Jambhalikar, J. John, R. Islam, C. L. Nagendra and T. K. Alex, “An X band RF MEMS switch based on silicon-on-glass architecture,” Sadhana - Academy Proceedings in Engineering Sciences, vol. 34, no. 4, pp. 625-631, 2009. [21] J. Park, E. S. Shim, W. Choi, Y. Kim, Y. Kwon and D. I. Cho, “A non-contact-type RF MEMS switch for 24-GHz radar applications,” Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 163-173, 2009. [22] M. Kaynak, K. E. Ehwald, R. Scholz, F. Korndorfer, C. Wipf, Y.M. Sun, B. Tillack, S. Zihir and Y. Gurbuz, “Characterization of an embedded RF-MEMS switch,” 2010 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 144-147, 2010. [23] X. He, Z. Lv, B. Liu and Z. Li, “A laterally driven capacitive RF MEMS switch using parylene as dielectric layer,” IEEE Sensors 2010 Conference, pp. 257-260, 2010. [24] Y. H. Jang, Y. S. Lee, Y. K. Kim and J. M. Kim, “High isolation RF MEMS contact switch in V- and W-bands using two directional motions,” Electronics Letters, vol. 46, no. 2, pp. 153-155, 2010. [25] A. Samira and A. S. Ebrahim, “A low voltage vertical comb RF MEMS switch,” Microsystem Technologies, vol. 16, no. 6, pp. 919-924, 2010. [26] P. Anna, A. Cola, D. A. Giorgio, T. Antonietta, S. Pietro and Q. Fabio, “Capacitive RF MEMS switches with tantalum-based materials,” Journal of Microelectromechanical Systems, vol. 20, no. 2, pp. 365-370, 2011. [27] F. M. Guo, Z. Q. Zhu, Y. F. Long, W. M. Wang, S. Z. Lai, N. Li, G. Q. Yang and W. Lu, “Study on low voltage actuated MEMS RF capacitive switched,” Sensors and Actuators, A: Physical, vol. 108, no. 1-3, pp. 128-133, 2003. [28] Coventor Inc., CoventorWare Version 2004 Tutorials. [29] N. S. Barker and G. M. Rebeiz, “Distributed MEMS true-time delary phase shifters and wide-band switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 11 pt 2, pp. 1881-1890, 1998. [30] David M. Pozar, Microwave engineering, 3rd ed. Hoboken, Wiley, 2005. [31] Z. J. Yao, S. Chen, S. Eshelman, D. Denniston and C. Goldsmith, “Micromachined low-loss microwave switches,” Journal of Microelectromechanical Systems, vol. 8, no. 2, pp. 129-134, 1999. [32] G. M. Rebeiz, RF MEMS Theory, Design, and Technology. Hoboken, Wiley, 2003. [33] [34] [35] [36] Transene Company Inc., [37] 莊達人,VLSI製造技術,五南圖書有限公司,2004。 [38] 陳俊翰,低驅動電壓之微機電射頻開關,國立中興大學碩士論文,2006。 [39] 陳盈良,結合電感的微機電射頻開關之設計與製作,國立中興大學碩士論文,2007。 [40] 蔡宗佑,CMOS-MEMS微機械式射頻開關,國立中興大學碩士論文,2010。
本研究利用台積電標準0.18 μm 1P6M CMOS製程技術,設計並製作射頻微機電開關,此開關是以靜電力作為驅動方式,並以電容耦合(Capacitive Coupling)的型式來決定訊號在各埠(Port)間傳遞之導通與否。此射頻微機電開關之架構包含了懸浮的金屬薄膜、彎曲之彈簧及一組50 Ω的共平面波導傳輸線。而傳輸線是以較大耦合面積的方式來做設計,如此可以提升開關在作動狀態下之隔離性能。透過有限元素分析軟體CoventorWare模擬開關之機械性質,並以電磁模擬軟體Ansoft Q3D模擬結構之電性,以及高頻分析軟體(Advanced Design System, ADS)模擬開關於高頻下之特性。後製程方面是採用無光罩濕蝕刻之方式蝕刻二氧化矽犧牲層,使結構可以順利的被釋放懸浮。經由實驗結果顯示,射頻微機電開關之驅動電壓為13 V;開關在On狀態下,當頻率在38 GHz時,插入損失與返回損失分別為-0.932 dB和-18 dB,在Off狀態下,隔離度則為-21.5 dB。

In this study, the fabrication of a RF (Radio Frequency) MEMS (Micro Elector Mechanical System) switch based on the standard 0.18 μm 1P6M (One Polysilicon Six Metal) CMOS (Complementary Metal Oxide Semiconductor) process was presented. The switch is actuated through the electrostatic force, and one is capacitive coupling type to decide the signal through or not between the ports. The structure of the switch consists of a suspended metal membrane, bend springs and a set of 50 Ω CPW (Coplanar Waveguide) transmission line. In order to promote the switch capability, the transmission's shape is designed as a large coupling area. The finite element method software, CoventorWare, is employed to simulate the mechanical properties of the switch. The electromagnetic analysis software, Ansoft Q3D, is used to simulate the electrical of the switch, and the high frequency analysis software, ADS, is adopted to evaluate the characteristics of the switch. The post-process utilizes a maskless wet etching to release the suspended membrane. Experiments showed that the driving voltage of the switch was 13 V. In “On” state, the insertion loss and return loss of the switch were -0.932 dB and -18 dB, respectively. In “Off” state, the isolation was -21.5 dB at 38 GHz.
其他識別: U0005-2706201210520400
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.