Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/1746
標題: 變頻器散熱座性能分析與量測
Measurement and analysis of the heat transfer characteristics of the heat sink of inverter
作者: 白雲瑞
Pai, Yun-Jui
關鍵字: Inverter;變頻器;Heat sink;CFD;Fluent;Heat transfer;Measurement;Die asting;IGBT;Al;ADC12;Temperature;散熱器;溫度量測;功率量測;熱傳;計算流體力學;數值計算;鑄造;鋁
出版社: 機械工程學系所
引用: [1](株)安川電機編著;羅國杰編譯。變頻器驅動技術。臺北市:全華,民88年。 [2]李祥編著。流體力學觀念剖析。第6版。臺北市:鼎茂圖書,民90年。 [3]J. P. Holman著;王鎮雄、朱朝煌、李世榮、劉傳仁、蔡豐欽合譯。熱傳遞學。第8版。臺北市:麥格羅希爾出版;高立圖書發行,民89年。 [4]Mohan. Undeland. Robbins著;江炫樟編譯。電力電子學。第三版。臺北市:全華,民92年。 [5]Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi著;杜鳳棋譯。流體力學。第2版。臺北市:高立圖書,民84年。 [6]王文耕。「電腦CPU散熱片造型對其熱傳效果之影響」。國立成功大學機械工程學系,碩士論文,民92年。 [7]張慶彬。「應用分散式類免疫演算法於散熱片之最佳化設計」。大同大學機械工程學研究所,碩士論文,民93年。 [8]林芝佑。「空氣流動的型態對長方形板鰭和正方形針鰭性能所造成的影響」。國立雲林科技大學機械工程系,碩士論文,民94年。 [9]黃世嘉。「二維對稱噴流對電子元件熱點衝擊冷卻之熱傳機制研究」。中原大學機械工程學系,碩士論文,民92年。 [10]王崇岳。「桌上型電腦散熱模組之散熱分析」。中原大學機械工程學系,碩士論文,民94年。 [11]楊尚榮。「直鰭片式電腦用散熱片墊造製程與模具設計之研究」。國立高雄第一科技大學機械與自動化工程系,碩士論文,民91年。 [12]陳賀振。「CPU散熱片擠製之模具設計及有限元素分析」。國立中山大學機械與機電工程研究所,碩士論文,民91年。 [13]吳俊鞍。「迷你電腦系統的熱流場分析與實驗」。國立台灣科技大學機械工程系,碩士論文,民95年。 [14]徐銘宏。「全球變頻器市場與競爭分析」。機械工業雜誌247期(民國92年10月),頁156-164。 [15]黃振東。「電腦散熱片材料與製程技術介紹」。工業材料雜誌171期(民國90年3月),頁130-138。 [16]劉君愷。「散熱片之設計與在電子冷卻技術中之應用」。2003年12月15日。<http://www.eedesign.com.tw/article/Design/circuit_design/circuit_design24.pdf>(2006年01月17日)。 [17]韩占忠、王敬、兰小平合编。FLUENT流体工程仿真计算实例与应用。北京市:北京理工大学出版社,2004。 [18](株)安川電機編著。インバーダドライブ技術。第2版。東京都:日刊工業新聞社,1997。 [19]FUJI ELECTRIC散熱設計方法。 [20]士林泛用型變頻器SL-E024/E044中文操作說明書。 [21]HIOKI產品型錄。 [22]J. P. Holman. Heat Transfer. 9th ed. New York: The McGraw-Hill Companies, Inc.,, 1963. [23]I. G. Currie. Fundamental Mechanics of Fluids. 2ed ed. New York: The McGraw-Hill Companies, Inc., 1974. [24]KIRK D. HAGEN. Heat Transfer with Applications. New Jersey: Prentice-Hall, Inc., 1999. [25]Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi, eds. Fundamentals of Fluid Mechanics. New Jersey: John Wiley & Sons, Inc., 2002. [26]D. Poulikakos. Conduction Heat Transfer. New Jersey: New Jersey: Prentice-Hall, Inc., 1994. [27]Chu, R. C. “Heat Transfer on Electronic System.” Proceeding of the 8th International Heat Transfer Conference, San Francisco,CA, pp. 36-42, 1986. [28]Nakayama, W., “Thermal Management of Electronic Equipment,” in advances in Thermal Modeling of Electronic Components and System, Bar-Cohen, A., Eds., Hemisphere, Washington, DC, Vol.1, pp. 1-78, 1988. [29]Lee,S. , 1995 , “ Optimum Design and Selection of Heat Sink ” IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part A, vol.18, no.4. [30]Sara,O.N. , 2003 ,“Performance analysis of rectangular ducts with staggered square pin fins” Energy Conversion and Management. vol. 44, pp.1787~1803. [31]Lee, S., 1998 ,“Calculating spreading resustance in heat sinks” Electronics Cooling, vol.4, No.1, January. [32]Jonsson, H. and Palm, B., 2001 ,“Thermal and Hydraulic of Plate Fin and Strip Fin Heat Sink under Varying bypass Conditions”, Inter Socity Conference on Thermal Phenomena, pp.98~103. [33]Azar, K., McLeod, R. S., and Caron, R. E., ”Narrow Channel Heat Sink for Cooling of High Powered Electronic Components,” in Proc. 8th Annual IEEE Semi-Therm Symp., pp.12-19, 1992. [34]Bar-Cohen, A., ”Fin Thickness for an Optimal Natural Convection Array of Rectangular Fins,” ASME J. Heat Transfer, Vol. 101, pp.564-566, 1976. [35]Chen, Y. C., and Li, C., ”How to Make a Correct Assessment of Heat Sinks Performance,” pp.277-285, 1995. [36]Iyengar, M., and Bar-Cohen, A., ”Least-Material Optimization of Vertical Pin-Fin, Plate-Fin and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer,” IEEE International Society Conference on Thermal Phenomena,pp.295-302, 1998. [37]Yu, E., and Joshi, Y., “Heat Transfer Enhancement from Enclosed Discrete Components Using Pin-Fin Heat Sinks,” International Journal of Heat and Mass Transfer, Vol. 45, No. 25, pp. 4957-4966, 2002. [38] Masud, B., David, C., and Denpong, S., “A Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow,” Proceeding of 6th Intersociety Conference on Thermal Phenomena in Electronic System, pp. 310-315, 1998. [39] Andrea, L. V., Stefano, G., and Franco, G., “Optimum Design of Vertical Rectangular Fin Arrays,” International Journal of Thermal Sciences, Vol. 38, No. 6, pp. 525-529, 1999. [40] Bejan, A., and Sciubba, E., “The Optimal Spacing of Parallel Plates Cooled by Forced Convection,” International Journal of Heat and Mass Transfer, Vol. 35, No. 12, pp. 3259-3264, 1992.
摘要: 
變頻器目前廣泛應用於各項自動控制設備的驅動系統中,其原理是利用電子元件IGBT快速切關直流電以模擬交流電,進而控制馬達輸出;而快速切關的動作將造成功的損失,進而產生熱能,當熱能無適當途徑散逸時,IGBT溫度便不斷上升,導致損毀。而於目前的產品設計中這些熱能主要是以鑄造成形的散熱底座進行散熱;但隨著小型化的趨勢,目前的散熱底座已不敷需求,本文以此為目標針對鑄造成形的散熱底座進行設計變更,並探討變更後的效果。
應用CFD軟體分析熱傳已有許久的歷史,故本文設計變更分析採用CFD軟體Fluent作為主要模擬計算工具;文中除說明Fluent運用時之設定外亦比較計算結果與量測數據之差異,並以此建構設計變更的基本模型。
在設計變更初期,本文先針對原散熱底座改變(1)擺設方向(2)使用環境溫度(3)損失功率…等三項操作條件進行模擬分析;接著,在考量製造可行性的限制與增加散熱效能的目標下,提出(1)分段式交錯散熱鰭片的散熱底座(2)熱源供應面厚度尺寸為3.0mm的散熱底座(3)散熱鰭片數量9片的散熱底座及(4)波浪狀散熱鰭片的散熱底座…等四組改變設計條件的散熱底座進行數值模擬,並分析各散熱底座之溫度分佈與流場分佈狀態。
本文期望建構一鑄造成形散熱底座之設計平台,運用其模擬計算各式各樣的散熱底座之散熱能力,以節省過去嘗試錯誤設計方式所浪費的時間與金錢,並依此設計出更具效益之散熱器。

Currently, Inverter is widely used in many of the automatic control equipment's driving systems. The principle is to use the electronic component IGBT (Insulated Gate Bipolar Transistor) to simulate Alternating Current (AC) by the rapid switching of Direct Current (DC) and hence control the output of the motor. However, the rapid switching can cause power loss and produce heat (heat energy). If the heat cannot be dissipated or removed by appropriate means, the temperature of IGBT will increase continuously and will cause damage to the Inverter. The main method of heat removal of the current inverter product design is by the die casting heat sink. But with the minimization tendency of the product size, the current die casting heat sink design no longer meets the requirement. Based on this fact, an investigation, which is included in this thesis, is conducted mainly focused on altering the present die casting heat sink design and analyzing their results and effects.
Analyzing the heat transfer using CFD software has a long history and hence the analyses of the design alterations in this thesis are mainly helped by using one of the CFD software called Fluent. The configurations in Fluent simulations are well explained in this thesis, as well as the comparisons of the calculation and measurement results. The basic model of the altered design is then determined by results.
At the beginning of the design alterations in this thesis, the investigation and analysis were focused on changing the original heat sink on three configurations, (1) the direction of the inverter's placement, (2) the surrounding temperature when the inverter is operating, (3) power loss. By taking the limitations of manufacturing possibilities and the aim of increasing the efficiency of heat removal into account, four design alterations are conveyed to the original heat sink design. These are (1) use partially-confined cross plate fins, (2) surfaces that are in contact with the heat source should be 3.0mm thick or wide, (3) using nine plate fins for the heat sink and (4) design the plate fins to be wave-like structure. A further simulation is carried out based on these four alterations and then each alteration's temperature distribution and convection status on the heat sink are analyzed.
The aim of this thesis is to produce a design platform for die casting heat sink design and use it to simulate the performance of various heat sink designs. From this, the time consumption and cost can be reduced compared to using trial and error design methods to produce a more efficient heat sink.
URI: http://hdl.handle.net/11455/1746
其他識別: U0005-2808200609295000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.